Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiazhong Zhang is active.

Publication


Featured researches published by Jiazhong Zhang.


Nature | 2010

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF -mutant melanoma

Gideon Bollag; Peter Hirth; James H. Tsai; Jiazhong Zhang; Prabha N. Ibrahim; Hanna Cho; Wayne Spevak; Chao Zhang; Ying Zhang; Gaston Habets; Elizabeth A. Burton; Bernice Wong; Garson Tsang; Brian L. West; Ben Powell; Rafe Shellooe; Adhirai Marimuthu; Hoa Nguyen; Kam Y. J. Zhang; Dean R. Artis; Joseph Schlessinger; Fei Su; Brian Higgins; Raman Mahadevan Iyer; Kurt D'Andrea; Astrid Koehler; Michael Stumm; Paul S. Lin; Richard J. Lee; Joseph F. Grippo

B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.

James H. Tsai; John T. Lee; Weiru Wang; Jiazhong Zhang; Hanna Cho; Shumeye Mamo; Ryan Bremer; Sam Gillette; Jun Kong; Nikolas K. Haass; Katrin Sproesser; Ling Li; Keiran S.M. Smalley; Daniel Fong; Yong-Liang Zhu; Adhirai Marimuthu; Hoa Nguyen; Billy Lam; Jennifer Liu; Ivana Cheung; Julie Rice; Yoshihisa Suzuki; Catherine Luu; Calvin Settachatgul; Rafe Shellooe; John Cantwell; Sung-Hou Kim; Joseph Schlessinger; Kam Y. J. Zhang; Brian L. West

BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors.


Nature Reviews Drug Discovery | 2012

Vemurafenib: the first drug approved for BRAF -mutant cancer

Gideon Bollag; James H. Tsai; Jiazhong Zhang; Chao Zhang; Prabha N. Ibrahim; Keith Nolop; Peter Hirth

The identification of driver oncogenes has provided important targets for drugs that can change the landscape of cancer therapies. One such example is the BRAF oncogene, which is found in about half of all melanomas as well as several other cancers. As a druggable kinase, oncogenic BRAF has become a crucial target of small-molecule drug discovery efforts. Following a rapid clinical development path, vemurafenib (Zelboraf; Plexxikon/Roche) was approved for the treatment of BRAF-mutated metastatic melanoma in the United States in August 2011 and the European Union in February 2012. This Review describes the underlying biology of BRAF, the technology used to identify vemurafenib and its clinical development milestones, along with future prospects based on lessons learned during its development.


Nature | 2015

RAF inhibitors that evade paradoxical MAPK pathway activation

Chao Zhang; Wayne Spevak; Ying Zhang; Elizabeth A. Burton; Yan Ma; Gaston Habets; Jiazhong Zhang; Jack Lin; Todd Ewing; Bernice Matusow; Garson Tsang; Adhirai Marimuthu; Hanna Cho; Guoxian Wu; Weiru Wang; Daniel Fong; Hoa Nguyen; Songyuan Shi; Patrick Womack; Marika Nespi; Rafe Shellooe; Heidi Carias; Ben Powell; Emily Light; Laura Sanftner; Jason Walters; James H. Tsai; Brian L. West; Gary Conard Visor; Hamid Rezaei

Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed ‘paradox breakers’) that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394.


The New England Journal of Medicine | 2015

Structure-Guided Blockade of CSF1R Kinase in Tenosynovial Giant-Cell Tumor

William D. Tap; Zev A. Wainberg; Stephen P. Anthony; Prabha N. Ibrahim; Chao Zhang; John H. Healey; Bartosz Chmielowski; Arthur P. Staddon; Allen Lee Cohn; Geoffrey I. Shapiro; Vicki L. Keedy; Arun S. Singh; Igor Puzanov; Eunice L. Kwak; Andrew J. Wagner; Daniel D. Von Hoff; Glen J. Weiss; Ramesh K. Ramanathan; Jiazhong Zhang; Gaston Habets; Ying Zhang; Elizabeth A. Burton; Gary Conard Visor; Laura Sanftner; Paul Severson; Hoa Nguyen; Marie J. Kim; Adhirai Marimuthu; Garson Tsang; Rafe Shellooe

BACKGROUND Expression of the colony-stimulating factor 1 (CSF1) gene is elevated in most tenosynovial giant-cell tumors. This observation has led to the discovery and clinical development of therapy targeting the CSF1 receptor (CSF1R). METHODS Using x-ray co-crystallography to guide our drug-discovery research, we generated a potent, selective CSF1R inhibitor, PLX3397, that traps the kinase in the autoinhibited conformation. We then conducted a multicenter, phase 1 trial in two parts to analyze this compound. In the first part, we evaluated escalations in the dose of PLX3397 that was administered orally in patients with solid tumors (dose-escalation study). In the second part, we evaluated PLX3397 at the chosen phase 2 dose in an extension cohort of patients with tenosynovial giant-cell tumors (extension study). Pharmacokinetic and tumor responses in the enrolled patients were assessed, and CSF1 in situ hybridization was performed to confirm the mechanism of action of PLX3397 and that the pattern of CSF1 expression was consistent with the pathological features of tenosynovial giant-cell tumor. RESULTS A total of 41 patients were enrolled in the dose-escalation study, and an additional 23 patients were enrolled in the extension study. The chosen phase 2 dose of PLX3397 was 1000 mg per day. In the extension study, 12 patients with tenosynovial giant-cell tumors had a partial response and 7 patients had stable disease. Responses usually occurred within the first 4 months of treatment, and the median duration of response exceeded 8 months. The most common adverse events included fatigue, change in hair color, nausea, dysgeusia, and periorbital edema; adverse events rarely led to discontinuation of treatment. CONCLUSIONS Treatment of tenosynovial giant-cell tumors with PLX3397 resulted in a prolonged regression in tumor volume in most patients. (Funded by Plexxikon; ClinicalTrials.gov number, NCT01004861.).


Proceedings of the National Academy of Sciences of the United States of America | 2013

Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor

Chao Zhang; Prabha N. Ibrahim; Jiazhong Zhang; Elizabeth A. Burton; Gaston Habets; Ying Zhang; Ben Powell; Brian L. West; Bernice Matusow; Garson Tsang; Rafe Shellooe; Heidi Carias; Hoa Nguyen; Adhirai Marimuthu; Kam Y. J. Zhang; Angela Oh; Ryan Bremer; Clarence R. Hurt; Dean R. Artis; Guoxian Wu; Marika Nespi; Wayne Spevak; Paul S. Lin; Keith Nolop; Peter Hirth; Gregory H Tesch; Gideon Bollag

Inflammation and cancer, two therapeutic areas historically addressed by separate drug discovery efforts, are now coupled in treatment approaches by a growing understanding of the dynamic molecular dialogues between immune and cancer cells. Agents that target specific compartments of the immune system, therefore, not only bring new disease modifying modalities to inflammatory diseases, but also offer a new avenue to cancer therapy by disrupting immune components of the microenvironment that foster tumor growth, progression, immune evasion, and treatment resistance. McDonough feline sarcoma viral (v-fms) oncogene homolog (FMS) and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) are two hematopoietic cell surface receptors that regulate the development and function of macrophages and mast cells, respectively. We disclose a highly specific dual FMS and KIT kinase inhibitor developed from a multifaceted chemical scaffold. As expected, this inhibitor blocks the activation of macrophages, osteoclasts, and mast cells controlled by these two receptors. More importantly, the dual FMS and KIT inhibition profile has translated into a combination of benefits in preclinical disease models of inflammation and cancer.


Cancer Discovery | 2018

BRD4 profiling identifies critical Chronic Lymphocytic Leukemia oncogenic circuits and reveals sensitivity to PLX51107, a novel structurally distinct BET inhibitor

Hatice Gulcin Ozer; Dalia El-Gamal; Ben Powell; Zachary A. Hing; James S. Blachly; Bonnie K. Harrington; Shaneice Mitchell; Nicole R. Grieselhuber; Katie Williams; Tzung-Huei Lai; Lapo Alinari; Robert A. Baiocchi; Lindsey Brinton; Elizabeth Baskin; Matthew J. Cannon; Larry Beaver; Virginia M. Goettl; David M. Lucas; Jennifer A. Woyach; Deepa Sampath; Amy Lehman; Lianbo Yu; Jiazhong Zhang; Yan Ma; Ying Zhang; Wayne Spevak; Songyuan Shi; Paul Severson; Rafe Shellooe; Heidi Carias

Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Annual Reports in Medicinal Chemistry | 2013

Chapter Twenty-Six - Case History: Vemurafenib, a Potent, Selective, and First-in-Class Inhibitor of Mutant BRAF for the Treatment of Metastatic Melanoma

Prabha N. Ibrahim; Jiazhong Zhang; Chao Zhang; Gideon Bollag

Abstract BRAF oncogene is found in about half of all metastatic melanoma and several other cancers. This druggable target presents the opportunity to develop oncogene-selective inhibitors that could be beneficial to melanoma patients. Vemurafenib (PLX4032) was discovered as part of a series of orally available, mutant-selective, BRAF inhibitors using “scaffold-based drug discovery” platform, which employs early co-crystallography to enhance the screening and chemistry optimization paradigm. Following a rapid clinical development path, vemurafenib was approved in the United States in 2011 and the European Union in 2012 and is marketed as Zelboraf® for the treatment of unreseactable or metastatic melanoma with BRAF V600E mutation as detected by an US Food and Drug Administration approved test.


Cancer Research | 2016

Abstract 4711: Broad anti-tumor activity of a novel BET bromodomain inhibitor

Yan Ma; Ben Powell; Jiazhong Zhang; Ying Zhang; Heidi Carias; Ullrich Schwertschlag; Gaston Habets; Prabha N. Ibrahim; Wayne Spevak; Chao Zhang; Gideon Bollag

Inhibitors against the bromodomain and extra terminal domain (BET) family of proteins have been pursued as promising oncology agents based on growing understanding of epigenetic control of disease processes. Through scaffold-based and crystallography-guided drug design, we discovered PLX51107, a potent and selective small molecule inhibitor of the BET family bromodomains. PLX51107 is structurally unrelated to the benzodiazepines such as JQ1, I-BET762, and OTX015 and other published BET inhibitors. PLX51107 exhibits low nanomolar potency in blocking interactions mediated by the four BET family proteins BRD2, BRD3, BRD4, and BRDT. Pharmacologic inhibition of BET proteins by PLX51107 suppresses the transcription of genes essential for tumor growth and survival and leads to selective killing of cancer cell lines across a broad range of hematologic malignancies (e.g. leukemia, lymphoma and multiple myeloma). A subset of solid tumors (e.g. melanoma and SCLC) is also sensitive to growth inhibition by the BET inhibitor PLX51107. Novel biomarkers in these diseases have been identified. PLX51107 is well tolerated and has sufficient potency and oral bioavailability to demonstrate in vivo efficacy in animal models of a variety of tumor types, representing both hematologic and solid tumors of diverse genetic backgrounds. In combination studies, PLX51107 showed potential to improve the efficacy (response rates and duration of response) of other anticancer treatments without increased toxicity. These results support further development of PLX51107 as an epigenetic-based therapy for a variety of cancer indications. Citation Format: Yan Ma, Ben Powell, Jiazhong Zhang, Ying Zhang, Heidi Carias, Ullrich Schwertschlag, Gaston Habets, Prabha Ibrahim, Wayne Spevak, Chao Zhang, Gideon Bollag. Broad anti-tumor activity of a novel BET bromodomain inhibitor. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4711.


Molecular Cancer Therapeutics | 2011

Abstract A246: Blockade of CSF-1R/CSF-1 signaling by PLX3397 attenuates prostate cancer cell growth in bone, prostate cancer-induced skeletal pain, and pathological bone remodeling.

Juan Miguel Jimenez-Andrade; Aaron P. Bloom; Magdalena J. Kaczmarska; Elizabeth A. Burton; Jiazhong Zhang; Paul S. Lin; Brian L. West; Patrick W. Mantyh

Prostate tumors that have metastasized to bone frequently proliferate in bone and induce significant bone pain and pathological remodeling, all of which are difficult to control fully using currently available therapies. Colony stimulating factor-1 (CSF-1) regulates the survival, proliferation, differentiation and function of cells in the monocyte lineage including macrophages and osteoclasts. Human studies have reported a greater expression of CSF-1 and its receptor, CSF-1R (also known as c-Fms), in tumor and stromal cells of metastatic prostate cancers versus non-metastatic prostate cancers. To assess the role of CSF-1R in pain and disease progression in bone from prostate cancer, a novel small molecule inhibitor of CSF-1R, PLX3397, was administered to mice that were injected in the femur marrow space with ACE-1 canine prostate cancer cells. Intrafemoral injection of prostate cancer cells resulted in significant growth of tumor, which in turn induced significant skeletal pain and massive formation of pathological, disordered, woven bone. Sustained administration of PLX3397 started on day 12 after the tumors were well established and pathological bone remodeling was evident. Six weeks treatment with PLX3397 significantly attenuated (∼50%) prostate tumor cell growth (p=0.018), bone cancer pain behaviors (p Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2011 Nov 12-16; San Francisco, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2011;10(11 Suppl):Abstract nr A246.

Collaboration


Dive into the Jiazhong Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge