Adis Khetubol
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adis Khetubol.
Journal of Applied Physics | 2013
Adis Khetubol; Sven Van Snick; Antti Hassinen; Eduard Fron; Yuliar Firdaus; Lesley Pandey; Charlotte C. David; Karel Duerinckx; Wim Dehaen; Zeger Hens; Mark Van der Auweraer
Upon exchanging long chain alkylamine ligands with a carbazole terminated fatty acid as 6-(N-carbazolyl)-hexanoic acid (C6) and 11-(N-carbazolyl) undecanoic acid (C11), efficient photoluminescence (PL) of CdSe/ZnS colloidal quantum dots (QDs) was observed upon excitation in the absorption band of the carbazole moiety at 330 nm. This effect, which occurred both in solution and in a poly(N-vinylcarbazole) (PVK) matrix doped with the QDs, is attributed to sensitization of the QDs by PVK and the ligands. More efficient energy transfer was observed in solution for the shorter ligand (C6) capped QDs, due to a shorter average distance between the donor (carbazole) and the acceptor (QD). The binding of C6 and C11 to the QDs was confirmed by 1H solution nuclear magnetic resonance, which showed line broadening of the carbazole signal due to a decrease of the mobility of the carbazoles upon binding to the QDs compared with the sharp lines observed for the free molecules in solution. In doped PVK films, the significa...
Journal of Applied Physics | 2015
Yuliar Firdaus; Rany Miranti; Eduard Fron; Adis Khetubol; Erwin Vandenplas; David Cheyns; Holger Borchert; J. Parisi; Mark Van der Auweraer
Photo-induced electron transfer between poly-(3-hexylthiophene) (P3HT) and small (2.4 nm) PbS quantum dots (QDs), capped by different ligands, was studied by picosecond and femtosecond time-resolved fluorescence and by photo-induced absorption (PIA) measurements. In line with previous experiments, we observed that the efficiency of the quenching of P3HT by PbS QDs increased upon decreasing the average thickness of the ligand shell. This trend was also observed in the PIA spectra and in prior work on the performance of photovoltaic devices where the active layer was a blend of P3HT with PbS QDs capped by different ligands. Combining the pico- and femtosecond fluorescence decays showed that the quenching in blend films of P3HT and PbS QDs treated with 1,4-benzenedithiol occurred over a broad time scale ranging from tens of femtoseconds to hundreds of picoseconds. This complex kinetics was attributed to exciton hopping followed by electron transfer to the conduction band of the QDs. We also compared the wave...
Journal of Applied Physics | 2015
Yuliar Firdaus; Erwin Vandenplas; Adis Khetubol; David Cheyns; Robert Gehlhaar; Mark Van der Auweraer
The charge carrier transport in thin film hybrid solar cells is analyzed and correlated with device performance and the mechanisms responsible for recombination loss. The hybrid bulk heterojunction consisted of a blend of poly(3-hexylthiophene) (P3HT) and small size (2.4 nm) PbS quantum dots (QDs). The charge transport in the P3HT:PbS blends was determined by measuring the space-charge limited current in hole-only and electron-only devices. When the loading of PbS QDs exceeds the percolation threshold, a significant increase of the electron mobility is observed in the blend with PbS QDs. The hole mobility, on the other hand, only slightly decreased upon increasing the loading of PbS QDs. We also showed that the photocurrent is limited by the low shunt resistance rather than by space-charge effects. The significant reduction of the fill factor at high light intensity suggests that under these conditions the non-geminate recombination dominates. However, at open-circuit conditions, the trap-assisted recombination dominates over non-geminate recombination.
Photochemistry and Photobiology | 2015
Adis Khetubol; Sven Van Snick; Melissa L. Clark; Eduard Fron; Eduardo Coutino-Gonzalez; Arvid Cloet; Koen Kennes; Yuliar Firdaus; Maarten Vlasselaer; Volker Leen; Wim Dehaen; Mark Van der Auweraer
A novel π‐conjugated triad and a polymer incorporating indolo[3,2‐b]‐carbazole (ICZ) and 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) were synthesized via a Sonogashira coupling. Compared to the parent BODIPY the absorption and fluorescence spectrum were for both compounds broader and redshifted. The redshift of the fluorescence and the decrease of the fluorescence quantum yield and decay time upon increasing solvent polarity were attributed to the formation of a partial charge‐transfer state. Upon excitation in the ICZ absorption band the ICZ fluorescence was quenched in both compounds mainly due to energy transfer to the BODIPY moiety. In a similar ICZ–π–DPP polymer (where DPP is diketopyrrolopyrrole), a smaller redshift of the absorption and fluorescence spectra compared to the parent DPP was observed. A less efficient quenching of the ICZ fluorescence in the ICZ–π–DPP polymer could be related to the unfavorable orientation of the transition dipoles of ICZ and DPP. The rate constant for energy transfer was for all compounds an order of magnitude smaller than predicted by Förster theory. While in a solid film of the triad a further redshift of the absorption maximum of nearly 100 nm was observed, no such shift was observed for the ICZ–π–BODIPY polymer.
Proceedings of SPIE | 2012
Adis Khetubol; Y Firduas; Antti Hassinen; S Van Snick; Zeger Hens; Wim Dehaen
Blue emitting CdSe/ZnS quantum dots (QDs) were encapsulated with the ligand 11-(N-carbazolyl) undecanoic acid (C11). Steady-state photoluminescence (PL) experiments show an enhancement of the QD emission upon the excitation of the carbazole ligand in solution compared to the situation where a solution with the same concentration of QDs capped with oleic acid (OA) were excited at the same wavelength. This suggests energy transfer from the carbazole moiety to the QD cores. When incorporating the QDs in a poly (N-vinylcarbazole) (PVK) matrix, a significant enhancement of the QD emission upon the excitation of PVK was also observed indicating an efficient energy transfer from PVK to the QDs in the case of C11 capped ligands. Confocal microscopy images of the doped PVK films show clearly better miscibility of PVK and QDs capped with C11 compared with those capped with OA. Nanosecond time-resolved PL experiment shows evidence of singlet transfer with Förster resonance energy transfer (FRET) efficiency of 39% for the QDs in solution, while the efficiency of this process amounted to 15.6% for a PVK film doped with 30 wt% of the QDs. The smaller efficiency of the singlet transfer compared to the overall efficiency of energy transfer, suggested by the stationary PL spectra suggests an important role for triplet energy transfer. Electroluminescent devices were prepared with the structure; ITO/PEDOT:PSS/doped PVK with C11 capped QDs/Butyl PBD/Aluminum. Upon applying voltage, the devices show pure blue electroluminescence at low concentration of QDs (10 wt%) with a turn on voltage close to 6V.
Journal of Applied Physics | 2013
Adis Khetubol; Antti Hassinen; Yuliar Firdaus; Willem Vanderlinden; Sven Van Snick; Stijn Flamée; Bing Li; Steven De Feyter; Zeger Hens; Wim Dehaen; Mark Van der Auweraer
We report the experimental study of hole transport in poly(vinylcarbazole) (PVK) films doped with colloidal CdSe/ZnS core-shell quantum dots (QDs) determined using the Time-of-Flight (TOF) method. The miscibility between PVK and the QDs is improved by capping the QDs with a novel 11-(N-carbazolyl) undecanoic acid (C11) ligand instead of commonly used organic ligands, such as oleic acid. The study of the hole mobility of the pristine and doped PVK films with a doping concentration of the C11 capped QDs ranging from 1.61 × 1017 to 7.10 × 1018 dots/cm3 was performed as a function of electric field and temperature in the range of 105–106 V/cm and 298–338 K, respectively. Upon increasing the QD concentration, a decrease of hole mobility was observed by up to nearly 2 orders in magnitude at a doping concentration of 3.87 × 1018 dots/cm3 at T = 298 K. This suggests that the QDs induce shallow hole traps. The field and temperature dependence of the hole mobility was characterized using the Bassler disorder model and showed an increase of the energetic disorder (σ) from 124 to 204 meV as well as of the spatial disorder (Σ) from 0.95 to 5 when the concentration of the QDs was increased to 3.87 × 1018 dots/cm3. At higher concentration of the QDs (7.10 × 1018 dots/cm3), an increase of the hole mobility was observed suggesting hopping of the holes through the QD clusters. In addition, we also found that for this high doping concentration, the field dependence of the hole mobility was no longer in agreement with the Bassler disorder model. One should consider that at this doping concentration, the volume occupied by the inorganic (CdSe + ZnS) and organic (C11) components of the QDs in the doped film was estimated to be 14.6 and 15.8 volume %, respectively. This implies that the volume fraction of the inorganic material is very close to the percolation threshold, which amounts to 17 volume % for small spherical particles embedded in a three dimensional matrix. Furthermore, the conductivity data suggest a qualitative change in film properties between the samples with 3.87 × 1018 and 7.10 × 1018 dots/cm3. The study of film morphology by atomic force microscopy (AFM) experiment shows that while for the film with 3.87 × 1018 dots/cm3 the surface of the film has still the same features as that of a pristine PVK film, this is no longer the case for the film with 7.10 × 1018 dots/cm3, where shallow holes with a diameter of 100 to 200 nm become visible. These holes with the size much larger than the diameter of an individual QD likely correspond to clusters of the QDs. Upon further increasing the QD concentration to 9.68 × 1018 dots/cm3, the density of these holes is also increased. A correlation between the conductivity data and the film morphologies indicates that the presence of these QD clusters in the sample with 7.10 × 1018 dots/cm3 does not only change the homogeneity and roughness of the film but also leads to a significant change in the shape of the density of states of the energy sites for hopping holes resulting in a field and temperature dependence of the hole mobility that is no longer compatible with the Gaussian disorder model for this sample. Furthermore, the presence of these “hole” structures observed with AFM might imply a formation of large QD clusters in the polymer film, which form continuous pathways for charge carrier hopping between the opposite electrodes.
Proceedings of SPIE | 2012
Yuliar Firdaus; Adis Khetubol; Suleyman Kudret; Hanne Diliën; Wouter Maes; Laurence Lutsen; Dirk Vanderzande; Mark Van der Auweraer
Long alkyl chain ligands such as oleic acid (OLA) which cover the as-prepared PbS nanodots act as an insulating layer that impedes efficient charge transfer in PbS nanodots:polymer hybrid solar cells. The replacement of OLA with tailored ligands of an appropriate chain length is needed to achieve a noticeable enhancement of photovoltaic performance. Several studies have centered on the ligand exchange prior to casting the PbS film1,2,3. However, this post synthesis approach requires careful consideration for the choice of a ligand as clustering of the nanodots has to be avoided. Recently, a new approach that allows direct chemical ligand replacement in a blended mixture of PbS:P3HT has been demonstrated 4,5,6. In this contribution, the latter approach (post-fabrication) was compared with the post-synthesis ligand exchange. We investigated the effect of the ligand exchange processes to the charge separation dynamics in the P3HT:PbS blends by steady-state and time-resolved photoluminescence (PL). Hexanoic acid and acetic acid were used as a short-length ligand for the post fabrication approach while decylamine, octylamine and butylamine were used for the post-synthesis approach. As expected, decreasing the chain length of the ligand led to an increase of the P3HT fluorescence quenching. The absence of enhancement of PbS luminescence due to energy transfer from P3HT and the dependence of the quenching efficiency on the bulkiness of the ligands coating the QDs suggest that the quenching of the P3HT fluorescence is dominated by electron transfer to PbS quantum dots (QDs). In addition, the fluorescence quenching is also less prominent in the P3HT with higher regioregularity (RR) suggesting an enhanced phase separation in the blend due to more densely packed nature of conjugated polymer with higher RR.
Journal of Polymer Science Part B | 2014
Adis Khetubol; Sven Van Snick; Egle Stanislovaityte; Antti Hassinen; Eduardo Coutino-Gonzalez; Willem Vanderlinden; Yuliar Firdaus; Eduard Fron; Maarten Vlasselaer; Jurate Simokaitiene; Steven De Feyter; Zeger Hens; Juozas V. Grazulevicius; Wim Dehaen; Mark Van der Auweraer
Archive | 2015
Yuliar Firdaus; Rany Miranti; Eduard Fron; Adis Khetubol; Erwin Vandenplas; David Cheyns; Holger Borchert; Jürgen Parisi; Mark Van der Auweraer
Journal of Polymer Science B, Polymer Physics and Physical Chemistry | 2014
Adis Khetubol; Sven Van Snick; Egle Stanislovaityte; Antti Hassinen; Eduardo Coutino-Gonzalez; Willem Vanderlinden; Yuliar Firdaus; Eduard Fron; Maarten Vlasselaer; Jurate Simokaitiene; Steven De Feyter; Zeger Hens; Juozas V. Grazulevicius; Wim Dehaen; Mark Van der Auweraer