Antti Hassinen
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antti Hassinen.
Journal of the American Chemical Society | 2012
Antti Hassinen; Iwan Moreels; Kim De Nolf; Philippe Smet; José Martins; Zeger Hens
The effect of short-chain alcohols and acetonitrile on the ligand shell composition and the photoluminescence quantum yield of purified PbSe and CdSe quantum dots is analyzed by solution NMR and photoluminescence spectroscopy. We find that short-chain alcohols induce the release of X-type carboxylate ligands with a concurrent reduction of the photoluminescence quantum yield, while acetonitrile does not. We interpret this difference in terms of the protic or aprotic character of both nonsolvents, where only the protic alcohols can provide the protons needed to desorb carboxylate ligands. We find similar differences between short-chain alcohols and acetonitrile when used as nonsolvents during the purification of crude synthesis products, a result stressing the importance of using aprotic nonsolvents for nanocrystal purification or processing.
Applied Physics Letters | 2012
Srk Rodriguez; Gabriel Lozano; Marcus Verschuuren; Raquel Gomes; Karel Lambert; B. De Geyter; Antti Hassinen; D. Van Thourhout; Zeger Hens; J. Gómez Rivas
We demonstrate that an array of optical antennas may render a thin layer of randomly oriented semiconductor nanocrystals into an enhanced and highly directional source of polarized light. The array sustains collective plasmonic lattice resonances, which are in spectral overlap with the emission of the nanocrystals over narrow angular regions. Consequently, different photon energies of visible light are enhanced and beamed into definite directions.
Nano Letters | 2012
Gabriele Rainò; Iwan Moreels; Antti Hassinen; Thilo Stöferle; Zeger Hens; Rainer F. Mahrt
Exciton dynamics within the band-edge state manifold of CdSe/ZnS and CdSe/CdS quantum dots (QDs) have been investigated. Low-temperature time-resolved photoluminescence (PL) experiments demonstrate that exciton relaxation is mediated by LO phonons, whereas an acoustic phonon bottleneck is observed for splitting energies lower than the optical phonon energy. This has important implications since the main source affecting exciton dephasing is considered to be a spin-flip process. Our results concur with recent observations of long exciton dephasing times in CdSe/CdS QDs and show a way to engineer nanoparticles with enhanced coherence time, a prerequisite for their use in quantum optical applications.
Applied Physics Letters | 2012
Bram De Geyter; Katarzyna Komorowska; Edouard Brainis; Philippe Emplit; Pieter Geiregat; Antti Hassinen; Zeger Hens; Dries Van Thourhout
We report on the fabrication of free-standing and optically active microdisks with cadmium-based colloidal quantum dots embedded directly into silicon nitride. We show that the process optimization results in low-loss silicon nitride microdisks. The Si3N4 matrix provides the stability necessary to preserve the optical properties of the quantum dots and observe efficient coupling of the photoluminescence to the resonating microdisk modes. Using a spectrally and spatially resolved microphotoluminescence measurement, we map the emission pattern from the microdisk. This technique allows us to identify the resonant modes. The results show good agreement with numerical mode simulations.
Journal of Applied Physics | 2013
Adis Khetubol; Sven Van Snick; Antti Hassinen; Eduard Fron; Yuliar Firdaus; Lesley Pandey; Charlotte C. David; Karel Duerinckx; Wim Dehaen; Zeger Hens; Mark Van der Auweraer
Upon exchanging long chain alkylamine ligands with a carbazole terminated fatty acid as 6-(N-carbazolyl)-hexanoic acid (C6) and 11-(N-carbazolyl) undecanoic acid (C11), efficient photoluminescence (PL) of CdSe/ZnS colloidal quantum dots (QDs) was observed upon excitation in the absorption band of the carbazole moiety at 330 nm. This effect, which occurred both in solution and in a poly(N-vinylcarbazole) (PVK) matrix doped with the QDs, is attributed to sensitization of the QDs by PVK and the ligands. More efficient energy transfer was observed in solution for the shorter ligand (C6) capped QDs, due to a shorter average distance between the donor (carbazole) and the acceptor (QD). The binding of C6 and C11 to the QDs was confirmed by 1H solution nuclear magnetic resonance, which showed line broadening of the carbazole signal due to a decrease of the mobility of the carbazoles upon binding to the QDs compared with the sharp lines observed for the free molecules in solution. In doped PVK films, the significa...
Proceedings of SPIE | 2012
Adis Khetubol; Y Firduas; Antti Hassinen; S Van Snick; Zeger Hens; Wim Dehaen
Blue emitting CdSe/ZnS quantum dots (QDs) were encapsulated with the ligand 11-(N-carbazolyl) undecanoic acid (C11). Steady-state photoluminescence (PL) experiments show an enhancement of the QD emission upon the excitation of the carbazole ligand in solution compared to the situation where a solution with the same concentration of QDs capped with oleic acid (OA) were excited at the same wavelength. This suggests energy transfer from the carbazole moiety to the QD cores. When incorporating the QDs in a poly (N-vinylcarbazole) (PVK) matrix, a significant enhancement of the QD emission upon the excitation of PVK was also observed indicating an efficient energy transfer from PVK to the QDs in the case of C11 capped ligands. Confocal microscopy images of the doped PVK films show clearly better miscibility of PVK and QDs capped with C11 compared with those capped with OA. Nanosecond time-resolved PL experiment shows evidence of singlet transfer with Förster resonance energy transfer (FRET) efficiency of 39% for the QDs in solution, while the efficiency of this process amounted to 15.6% for a PVK film doped with 30 wt% of the QDs. The smaller efficiency of the singlet transfer compared to the overall efficiency of energy transfer, suggested by the stationary PL spectra suggests an important role for triplet energy transfer. Electroluminescent devices were prepared with the structure; ITO/PEDOT:PSS/doped PVK with C11 capped QDs/Butyl PBD/Aluminum. Upon applying voltage, the devices show pure blue electroluminescence at low concentration of QDs (10 wt%) with a turn on voltage close to 6V.
Journal of Applied Physics | 2013
Adis Khetubol; Antti Hassinen; Yuliar Firdaus; Willem Vanderlinden; Sven Van Snick; Stijn Flamée; Bing Li; Steven De Feyter; Zeger Hens; Wim Dehaen; Mark Van der Auweraer
We report the experimental study of hole transport in poly(vinylcarbazole) (PVK) films doped with colloidal CdSe/ZnS core-shell quantum dots (QDs) determined using the Time-of-Flight (TOF) method. The miscibility between PVK and the QDs is improved by capping the QDs with a novel 11-(N-carbazolyl) undecanoic acid (C11) ligand instead of commonly used organic ligands, such as oleic acid. The study of the hole mobility of the pristine and doped PVK films with a doping concentration of the C11 capped QDs ranging from 1.61 × 1017 to 7.10 × 1018 dots/cm3 was performed as a function of electric field and temperature in the range of 105–106 V/cm and 298–338 K, respectively. Upon increasing the QD concentration, a decrease of hole mobility was observed by up to nearly 2 orders in magnitude at a doping concentration of 3.87 × 1018 dots/cm3 at T = 298 K. This suggests that the QDs induce shallow hole traps. The field and temperature dependence of the hole mobility was characterized using the Bassler disorder model and showed an increase of the energetic disorder (σ) from 124 to 204 meV as well as of the spatial disorder (Σ) from 0.95 to 5 when the concentration of the QDs was increased to 3.87 × 1018 dots/cm3. At higher concentration of the QDs (7.10 × 1018 dots/cm3), an increase of the hole mobility was observed suggesting hopping of the holes through the QD clusters. In addition, we also found that for this high doping concentration, the field dependence of the hole mobility was no longer in agreement with the Bassler disorder model. One should consider that at this doping concentration, the volume occupied by the inorganic (CdSe + ZnS) and organic (C11) components of the QDs in the doped film was estimated to be 14.6 and 15.8 volume %, respectively. This implies that the volume fraction of the inorganic material is very close to the percolation threshold, which amounts to 17 volume % for small spherical particles embedded in a three dimensional matrix. Furthermore, the conductivity data suggest a qualitative change in film properties between the samples with 3.87 × 1018 and 7.10 × 1018 dots/cm3. The study of film morphology by atomic force microscopy (AFM) experiment shows that while for the film with 3.87 × 1018 dots/cm3 the surface of the film has still the same features as that of a pristine PVK film, this is no longer the case for the film with 7.10 × 1018 dots/cm3, where shallow holes with a diameter of 100 to 200 nm become visible. These holes with the size much larger than the diameter of an individual QD likely correspond to clusters of the QDs. Upon further increasing the QD concentration to 9.68 × 1018 dots/cm3, the density of these holes is also increased. A correlation between the conductivity data and the film morphologies indicates that the presence of these QD clusters in the sample with 7.10 × 1018 dots/cm3 does not only change the homogeneity and roughness of the film but also leads to a significant change in the shape of the density of states of the energy sites for hopping holes resulting in a field and temperature dependence of the hole mobility that is no longer compatible with the Gaussian disorder model for this sample. Furthermore, the presence of these “hole” structures observed with AFM might imply a formation of large QD clusters in the polymer film, which form continuous pathways for charge carrier hopping between the opposite electrodes.
Nanoparticles : workhorses of nanoscience | 2014
Antti Hassinen; José Martins; Zeger Hens
In this chapter, solution nuclear magnetic resonance (NMR) spectroscopy is introduced and shown to be a powerful tool to analyze in situ the surface chemistry of colloidal nanoparticles. It is not that the questions that are asked are difficult ones, but the answers are very hard to get by, and it is in this respect that NMR makes a difference.
Journal of Physical Chemistry Letters | 2011
Raquel Gomes; Antti Hassinen; Agnieszka Szczygiel; Qiang Zhao; Andr e Vantomme; José Martins; Zeger Hens
Journal of Physical Chemistry Letters | 2010
Antti Hassinen; Iwan Moreels; Celso de Mello Donegá; José Martins; Zeger Hens