Adolfo Vázquez-Quesada
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adolfo Vázquez-Quesada.
Journal of Chemical Physics | 2009
Adolfo Vázquez-Quesada; Marco Ellero; Pep Español
Dissipative particle dynamics (DPD) as a model of fluid particles suffers from the problem that it has no physical scale associated with the particles. Therefore, a DPD simulation requires an ambiguous fine-tuning of the model parameters with the physical parameters. A corrected version of DPD that does not suffer from this problem is smoothed dissipative particle dynamics (SDPD) [P. Espanol and M. Revenga, Phys. Rev. E 67, 026705 (2003)]. SDPD is, in fact, a version of the well-known smoothed particle hydrodynamics method, albeit with the proper inclusion of thermal fluctuations. Here, we show that SDPD produces the proper scaling of the fluctuations as the resolution of the simulation is varied. This is investigated in two problems: the Brownian motion of a spherical colloidal particle and a polymer molecule in suspension.
Physical Review Letters | 2016
Adolfo Vázquez-Quesada; Roger I. Tanner; Marco Ellero
Shear thinning-a reduction in suspension viscosity with increasing shear rates-is understood to arise in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning phenomenon has also been often reported in experiments with noncolloidal systems at high volume fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions. We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and it means that the matrix fluid rheology must be considered over a wide range of shear rates.
Physics of Fluids | 2017
Adolfo Vázquez-Quesada; Marco Ellero
In this work, we extend the three-dimensional Smoothed Particle Hydrodynamics (SPH) non-colloidal particulate model previously developed for Newtonian suspending media in Vazquez-Quesada and Ellero [“Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics,” J. Non-Newtonian Fluid Mech. 233, 37–47 (2016)] to viscoelastic matrices. For the solvent medium, the coarse-grained SPH viscoelastic formulation proposed in Vazquez-Quesada, Ellero, and Espanol [“Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations,” Phys. Rev. E 79, 056707 (2009)] is adopted. The property of this particular set of equations is that they are entirely derived within the general equation for non-equilibrium reversible-irreversible coupling formalism and therefore enjoy automatically thermodynamic consistency. The viscoelastic model is derived through a physical specification of a conformation-tensor-dependent entropy function for the fluid partic...
Physics of Fluids | 2017
Adolfo Vázquez-Quesada; Thomas Franke; Marco Ellero
In this work, an analytical model for the behavior of superparamagnetic chains under the effect of a rotating magnetic field is presented. It is postulated that the relevant mechanisms for describing the shape and breakup of the chains into smaller fragments are the induced dipole-dipole magnetic force on the external beads, their translational and rotational drag forces, and the tangential lubrication between particles. Under this assumption, the characteristic S-shape of the chain can be qualitatively understood. Furthermore, based on a straight chain approximation, a novel analytical expression for the critical frequency for the chain breakup is obtained. In order to validate the model, the analytical expressions are compared with full three-dimensional smoothed particle hydrodynamics simulations of magnetic beads showing excellent agreement. Comparison with previous theoretical results and experimental data is also reported.
Physics of Fluids | 2017
Adolfo Vázquez-Quesada; Norman J. Wagner; Marco Ellero
In this work, an analytical solution for the pressure-driven flow of a discontinuous shear-thickening (DST) fluid in a planar channel is presented. In order to model the fluid rheology, a regularized inverse-biviscous model is adopted. This involves a region of finite thickness to model the sharp jump in viscosity, and it is consistent with momentum conservation. In the limit of vanishing thickness, the truly DST behavior is obtained. Analytical results are validated by numerical simulations under steady and start-up flow using the smoothed particle hydrodynamics method. Flow results are investigated and discussed for different values of the model parameters.
Physics of Fluids | 2016
Adolfo Vázquez-Quesada; Marco Ellero
An analytical solution for the calculation of the normal lubrication force acting between two moving spheres embedded in a shear-thinning fluid represented by a bi-viscous model is provided. The resulting force between the suspended spheres exhibits a consistent transition between the Newtonian constant-viscosity limits and it reduces to the well-known standard Newtonian lubrication theory for viscosity-ratio approaching one. Effects of several physical parameters of the theory are analyzed under relevant physical conditions, i.e., for a prototypical case of two non-colloidal spheres immersed in a non-Newtonian fluid with rheology parameterized by a bi-viscosity model. Topological results for high/low-viscosity regions in the gap between spheres are also analyzed in detail showing a rich phenomenology. The presented model enables the extension of lubrication dynamics for suspensions interacting with non-Newtonian matrices and provides a clean theoretical framework for new numerical computations of flow of dense complex particulate systems.
Journal of Non-newtonian Fluid Mechanics | 2012
Adolfo Vázquez-Quesada; Marco Ellero
Physical Review E | 2009
Adolfo Vázquez-Quesada; Marco Ellero; Pep Español
Journal of Non-newtonian Fluid Mechanics | 2016
Adolfo Vázquez-Quesada; Marco Ellero
Microfluidics and Nanofluidics | 2012
Adolfo Vázquez-Quesada; Marco Ellero; Pep Español