Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adriana Bajetto is active.

Publication


Featured researches published by Adriana Bajetto.


Frontiers in Neuroendocrinology | 2001

Chemokines and their receptors in the central nervous system.

Adriana Bajetto; Rudy Bonavia; Simone Barbero; Tullio Florio; Gennaro Schettini

Chemokines are a family of proteins associated with the trafficking of leukocytes in physiological immune surveillance and inflammatory cell recruitment in host defence. They are classified into four classes based on the positions of key cystiene residues: C, CC, CXC, and CX3C. Chemokines act through both specific and shared receptors that all belong to the superfamily of G-protein-coupled receptors. Besides their well-established role in the immune system, several recent reports have demonstrated that these proteins also play a role in the central nervous system (CNS). In the CNS, chemokines are constitutively expressed by microglial cells, astrocytes, and neurons, and their expression can be increased after induction with inflammatory mediators. Constitutive expression of chemokines and chemokine receptors has been observed in both developing and adult brains, and the role played by these proteins in the normal brain is the object of intense study by many research groups. Chemokines are involved in brain development and in the maintenance of normal brain homeostasis; these proteins play a role in the migration, differentiation, and proliferation of glial and neuronal cells. The chemokine stromal cell-derived factor 1 and its receptor, CXCR4, are essential for life during development, and this ligand-receptor pair has been shown to have a fundamental role in neuron migration during cerebellar formation. Chemokine and chemokine receptor expression can be increased by inflammatory mediators, and this has in turn been associated with several acute and chronic inflammatory conditions. In the CNS, chemokines play an essential role in neuroinflammation as mediators of leukocyte infiltration. Their overexpression has been implicated in different neurological disorders, such as multiple sclerosis, trauma, stroke, Alzheimers disease, tumor progression, and acquired immunodeficiency syndrome-associated dementia. An emerging area of interest for chemokine action is represented by the communication between the neuroendocrine and the immune system. Chemokines have hormone-like actions, specifically regulating the key host physiopathological responses of fever and appetite. It is now evident that chemokines and their receptors represent a plurifunctional family of proteins whose actions on the CNS are not restricted to neuroinflammation. These molecules constitute crucial regulators of cellular communication in physiological and developmental processes.


Journal of Neurochemistry | 2002

Characterization of chemokines and their receptors in the central nervous system: physiopathological implications.

Adriana Bajetto; Rudy Bonavia; Simone Barbero; Gennaro Schettini

Chemokines represent key factors in the outburst of the immune response, by activating and directing the leukocyte traffic, both in lymphopoiesis and in immune surveillance. Neurobiologists took little interest in chemokines for many years, until their link to acquired immune deficiency syndrome‐associated dementia became established, and thus their importance in this field has been neglected. Nevertheless, the body of data on their expression and role in the CNS has grown in the past few years, along with a new vision of brain as an immunologically competent and active organ. A large number of chemokines and chemokine receptors are expressed in neurons, astrocytes, microglia and oligodendrocytes, either constitutively or induced by inflammatory mediators. They are involved in many neuropathological processes in which an inflammatory state persists, as well as in brain tumor progression and metastasis. Moreover, there is evidence for a crucial role of CNS chemokines under physiological conditions, similar to well known functions in the immune system, such as proliferation and developmental patterning, but also peculiar to the CNS, such as regulation of neural transmission, plasticity and survival.


Journal of Biological Chemistry | 2009

Different Response of Human Glioma Tumor-initiating Cells to Epidermal Growth Factor Receptor Kinase Inhibitors

Fabrizio Griffero; Antonio Daga; Daniela Marubbi; Maria Cristina Capra; Alice Melotti; Alessandra Pattarozzi; Monica Gatti; Adriana Bajetto; Carola Porcile; Federica Barbieri; Roberto E. Favoni; Michele Lo Casto; Gianluigi Zona; Renato Spaziante; Tullio Florio; Giorgio Corte

Because a subpopulation of cancer stem cells (tumor-initiating cells, TICs) is believed to be responsible for the development, progression, and recurrence of many tumors, we evaluated the in vitro sensitivity of human glioma TICs to epidermal growth factor receptor (EGFR) kinase inhibitors (erlotinib and gefitinib) and possible molecular determinants for their effects. Cells isolated from seven glioblastomas (GBM 1-7) and grown using neural stem cell permissive conditions were characterized for in vivo tumorigenicity, expression of tumor stem cell markers (CD133, nestin), and multilineage differentiation properties, confirming that these cultures are enriched in TICs. TIC cultures were challenged with increasing concentrations of erlotinib and gefitinib, and their survival was evaluated after 1-4 days. In most cases, a time- and concentration-dependent cell death was observed, although GBM 2 was completely insensitive to both drugs, and GBM 7 was responsive only to the highest concentrations tested. Using a radioligand binding assay, we show that all GBM TICs express EGFR. Erlotinib and gefitinib inhibited EGFR and ERK1/2 phosphorylation/activation in all GBMs, irrespective of the antiproliferative response observed. However, under basal conditions GBM 2 showed a high Akt phosphorylation that was completely insensitive to both drugs, whereas GBM 7 was completely insensitive to gefitinib, and Akt inactivation occurred only for the highest erlotinib concentration tested, showing a precise relationship with the antiproliferative effects of the drug. Interestingly, in GBM 2, phosphatase and tensin homolog expression was significantly down-regulated, possibly accounting for the insensitivity to the drugs. In conclusion, glioma TICs are responsive to anti-EGFR drugs, but phosphatase and tensin homolog expression and Akt inhibition seem to be necessary for such effect.


Toxicology Letters | 2003

Chemokines and their receptors in the CNS: expression of CXCL12/SDF-1 and CXCR4 and their role in astrocyte proliferation.

Rudy Bonavia; Adriana Bajetto; Simone Barbero; Paolo Pirani; Tullio Florio; Gennaro Schettini

The study of chemokine role in the CNS indubitably represents an important step to understanding many aspects of brain pathology, physiology and development. Here we discuss our recent research on the expression of chemokines and chemokine receptors in brain tissues and in cultured CNS cells, with particular regard to the CXCL12/SDF-1-CXCR4 system. We showed their expression in both glial and neuronal cells in basal conditions and their modulation upon stimulation. We demonstrated that CXCL12/SDF-1 in vitro act as a growth factor for astrocytes by stimulating their proliferation, a phenomenon that could represent the basis of pathological conditions such as gliosis and malignant transformation. We investigated the signal transduction pathways, identifying in the sequential activation of G-protein-PI-3Kinase-ERK1/2 the main signaling cascade linked to the CXCL12/SDF-1-induced proliferation in astrocytes.


Annals of the New York Academy of Sciences | 2002

Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro

Simone Barbero; Adriana Bajetto; Rudy Bonavia; Carola Porcile; Patrizia Piccioli; Paolo Pirani; Jean Louis Ravetti; Gianluigi Zona; Renato Spaziante; Tullio Florio; Gennaro Schettini

Abstract: Chemokines are a family of proteins that chemoattract and activate cells by interacting with specific receptors on the surface of their targets. They are grouped into four classes based on the position of key cysteine residues: C, CC, CXC, and CX3C. Stromal cell‐derived factor 1 (SDF1), the ligand of the CXCR4 receptor, is a CXC chemokine involved in chemotaxis and brain development that also acts as coreceptor for HIV‐1 infection. It has been proposed that CXCR4 is overexpressed and required for proliferation in human brain tumor cells. We previously demonstrated that CXCR4 and SDF1 are expressed in culture of cortical type I rat astrocytes, cortical neurons, and cerebellar granule cells. In this study, we analyzed the expression of CXCR4 and SDF1 in four human brain tumor tissues, showing that CXCR4 is expressed in all tumors analyzed, whereas SDF1 is expressed only in two tumor tissues. We also investigated the possible functions of CXCR4 expressed in rat type I cortical astrocytes, demonstrating that SDF1α stimulates the proliferation of these cells in vitro. Moreover, we studied by western blot the intracellular pathway involved in cell proliferation, demonstrating that SDF1α induces the ERK1/2 phosphorylation that is reduced by the PD98059 compound, an MEK inhibitor.


Annals of the New York Academy of Sciences | 2004

CXCR4 Activation Induces Epidermal Growth Factor Receptor Transactivation in an Ovarian Cancer Cell Line

Carola Porcile; Adriana Bajetto; Simone Barbero; Paolo Pirani; Gennaro Schettini

Abstract: Chemokines are a family of proteins that have pleiotropic biological effects. They are well known to regulate the recruitment and trafficking of leukocytes to sites of inflammation. Chemokines are grouped into four classes based on the positions of key cysteine residues: C, CC, CXC, and CX3C. Stromal cell‐derived factor‐1 (SDF‐1), the ligand of the CXCR4 receptor, is a CXC chemokine and is a highly conserved gene. Ovarian cancer typically disseminates widely in the abdomen, a characteristic that limits curative therapy. The mechanisms that promote ovarian cancer proliferation are incompletely understood. We studied a human ovarian adenocarcinoma cell line (OC 314) and investigated the role of CXCR4 activation by SDF‐1 in human ovarian cancer. We demonstrate that CXCR4 and SDF‐1 mRNA are expressed in OC 314. We show that SDF‐1α induces proliferation in ovarian cancer cells in a dose‐dependent manner. Moreover, we demonstrate that the SDF‐1‐dependent proliferation correlates to the phosphorylation and activation of extracellular signal‐regulated kinases (ERK)1/2, which in turn are correlated to epidermal growth factor (EGF) receptor transactivation. In fact, AG1478, a specific inhibitor of the EGF receptor kinase, blocked both SDF‐1α‐dependent proliferation and ERK1/2 activation.


Neuro-oncology | 2007

CXCR4 and SDF1 expression in human meningiomas: A proliferative role in tumoral meningothelial cells in vitro

Adriana Bajetto; Federica Barbieri; Alessandra Pattarozzi; Alessandra Dorcaratto; Carola Porcile; Jean Louis Ravetti; Gianluigi Zona; Renato Spaziante; Gennaro Schettini; Tullio Florio

Chemokines participate in cellular processes associated with tumor proliferation, migration, and angiogenesis. We previously demonstrated that stromal cell-derived factor 1 (SDF1) exerts a mitogenic activity in glioblastomas through the activation of its receptor CXCR4. Here we studied the expression of this chemokine in human meningiomas and its possible role in cell proliferation. Reverse transcriptase-PCR analysis for CXCR4 and SDF1 was performed on 55 human meningiomas (47 WHO grade I, 5 WHO II, and 3 WHO III). Immunolabeling for CXCR4 and SDF1 was performed on paraffin-embedded sections of these tumors. [(3)H]Thymidine uptake and Western blot analyses were performed on primary meningeal cell cultures of tumors to evaluate the proliferative activity of human SDF1alpha (hSDF1alpha) in vitro and the involvement of extracellular signal-regulated kinase 1/2 (ERK1/2) activation in this process. CXCR4 mRNA was expressed by 78% of the tumor specimens and SDF1 mRNA by 53%. CXCR4 and SDF1 were often detected in the same tumor tissues and colocalized with epithelial membrane antigen immunostaining. In 9 of 12 primary cultures from meningiomas, hSDF1alpha induced significant cell proliferation that was strongly reduced by the mitogen-activated protein kinase kinase inhibitor PD98059, involving ERK1/2 activation in the proliferative signal of hSDF1alpha. In fact, CXCR4 stimulation led to ERK1/2 phosphorylation/activation. In addition, the hSDF1alpha-induced cell proliferation was significantly correlated with the MIB1 staining index in the corresponding surgical specimen. In conclusion, we found that human meningiomas express CXCR4 and SDF1 and that hSDF1alpha induces proliferation in primary meningioma cell cultures through the activation of ERK1/2.


Current Cancer Drug Targets | 2010

Gefitinib targets EGFR dimerization and ERK1/2 phosphorylation to inhibit pleural mesothelioma cell proliferation.

Roberto E. Favoni; Alessandra Pattarozzi; M. Lo Casto; Federica Barbieri; Monica Gatti; L. Paleari; Adriana Bajetto; Carola Porcile; G. Gaudino; L. Mutti; Giorgio Corte; Tullio Florio; M. Casto

Altered EGFR activity is a causal factor for human tumor development, including malignant pleural mesotheliomas. The aim of the present study was the evaluation of the effects of Gefitinib on EGF-induced mesothelioma cell proliferation and the intracellular mechanisms involved. Cell proliferation, DNA synthesis and apoptosis were measured by MTT, thymidine incorporation and FACS analysis; EGFR, ERK1/2 and Akt expression and phosphorylation by Western blot, whereas receptor sites were analyzed by binding studies. Gefitinib inhibited EGF-induced proliferation in two mesothelioma cell lines, derived from pleural effusion (IST-Mes2) or tumor biopsy (ZL55). The treatment with Gefitinib induced cell cycle arrest in both cell lines, while apoptosis was observed only for high concentrations and prolonged drug exposure. EGF-dependent mesothelioma cell proliferation was mediated by EGFR and ERK1/2 phosphorylation, while Akt was not affected. Gefitinib inhibited both EGFR and ERK1/2 activation, being maximal at drug concentrations that induce cytostatic effects, suggesting that the proapoptotic activity of Gefitinib is independent from EGFR inhibition. Gefitinib treatment increased EGFR Bmax, possibly through membrane stabilization of inactive receptor dimers that we show to be induced by the drug also in the absence of EGF. EGFR activation of ERK1/2 represents a key pathway for pleural mesothelioma cell proliferation. Low concentrations of Gefitinib cause mesothelioma cell cycle arrest through the blockade of EGFR activity while high concentrations induce apoptosis. Finally, we propose that the formation of inactive EGFR dimers may contribute to the antitumoral activity of Gefitinib.


Oncotarget | 2016

Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells

Alessandro Corsaro; Adriana Bajetto; Stefano Thellung; Giulia Begani; Valentina Villa; Mario Nizzari; Alessandra Pattarozzi; Agnese Solari; Monica Gatti; Aldo Pagano; Roberto Würth; Antonio Daga; Federica Barbieri; Tullio Florio

Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.


Archive | 2011

Glioblastoma Cancer Stem Cells: Response to Epidermal Growth Factor Receptor Kinase Inhibitors

Federica Barbieri; Adriana Bajetto; Alessandra Pattarozzi; Monica Gatti; Roberto Würth; Carola Porcile; Antonio Daga; Roberto E. Favoni; Giorgio Corte; T. Florio

Glioblastoma (GBM) is the most common and aggressive neoplasia of the central nervous system in adults. Despite continued improvements in surgery, chemotherapy, and radiotherapy, clinical outcome is still dismal and better understanding of GBM biology is needed to develop novel therapies. Recent studies have demonstrated the existence of a small subpopulation of cells with stem-like features termed cancer stem cells (CSCs) in several human cancers, including GBM. CSCs are slow growing, self-renewable and highly tumorigenic, give rise to progeny of multiple lineages, and are chemo-radio-resistant, often expressing high levels of multidrug resistance and drug efflux genes. According to CSC hypothesis, current therapies are cytotoxic to the bulk of highly proliferative tumor cells but fail to kill the relatively quiescent and resistant CSC subpopulation, thus allowing these cells to survive and induce tumor recurrence. These characteristics allow GBM CSCs to survive cytotoxic therapies and drive tumor recurrence. The epidermal growth factor receptor (EGFR/HER1) belongs to the receptor tyrosine kinase (TK) family that regulates cell proliferation, survival, differentiation and motility. Overexpression of EGFR occurs in several tumors, including GBM, correlates with increased cell proliferation, decreased apoptosis, and a poorer prognosis, sustaining cancer development and progression. Small-molecules targeting EGFR-TK (TK inhibitors, TKIs) are the most clinically developed EGFR targeted-therapies for the treatment of GBM. We reported that cultures enriched in CSC isolated from human GBMs undergo growth arrest and cell death in the presence of EGFR-TKIs. The high incidence of EGFR overexpression, amplification or co-expression of the mutated, constitutively active EGFRvIII in GBMs raised expectations that treatment with EGFR TKIs, such as gefitinib or erlotinib, would have significant positive effects. This review summarizes current knowledge regarding EGFR molecular abnormalities and dysregulation in high-grade gliomas, the role of CSCs in GBM, and discusses the implications of the CSC hypothesis for the development of future EGFR-targeted therapies for brain tumors.

Collaboration


Dive into the Adriana Bajetto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gennaro Schettini

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge