Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David Wang-Iverson is active.

Publication


Featured researches published by David Wang-Iverson.


Drug Discovery Today | 2005

Enantioselective chromatography in drug discovery

Yingru Zhang; Dauh-Rurng Wu; David Wang-Iverson; Adrienne A. Tymiak

Molecular chirality is a fundamental consideration in drug discovery, one necessary to understand and describe biological targets as well as to design effective pharmaceutical agents. Enantioselective chromatography has played an increasing role not only as an analytical tool for chiral analyses, but also as a preparative technique to obtain pure enantiomers from racemates quickly from a wide diversity of chemical structures. Different enantioselective chromatography techniques are reviewed here, with particular emphasis on the most widespread high performance liquid chromatography (HPLC) and the rapidly emerging supercritical fluid chromatography (SFC) techniques. This review focuses on the dramatic advances in the chiral stationary phases (CSPs) that have made HPLC and SFC indispensable techniques for drug discovery today. In addition, screening strategies for rapid method development and considerations for laboratory-scale preparative separation are discussed and recent achievements are highlighted.


Drug Discovery Today | 2011

Characterization of protein therapeutics by mass spectrometry: recent developments and future directions.

Guodong Chen; Bethanne M. Warrack; Angela Goodenough; Hui Wei; David Wang-Iverson; Adrienne A. Tymiak

Mass spectrometry (MS) has become a powerful technology in the discovery and development of protein therapeutics in the biopharmaceutical industry. This review article describes recent developments and future trends in the characterization of protein therapeutics using MS. We discuss top-down MS for the characterization of protein modifications, hydrogen/deuterium exchange MS and ion mobility MS methods for higher order protein structure studies. Quantitative analysis of protein therapeutics (in vivo) by MS as an orthogonal approach to immunoassay for pharmacokinetics studies will also be illustrated.


Journal of the American Society for Mass Spectrometry | 2010

A tris (2-carboxyethyl) phosphine (TCEP) related cleavage on cysteine-containing proteins

Peiran Liu; Brian W. O’Mara; Bethanne M. Warrack; Wei Wu; Yunping Huang; Yihong Zhang; Rulin Zhao; Mei Lin; Michael S. Ackerman; Peter K. Hocknell; Guodong Chen; Li Tao; Siegfried Rieble; Jack Wang; David Wang-Iverson; Adrienne A. Tymiak; Michael J. Grace; Reb Russell

Introduced in the late 1980s as a reducing reagent, Tris (2-carboxyethyl) phosphine (TCEP) has now become one of the most widely used protein reductants. To date, only a few studies on its side reactions have been published. We report the observation of a side reaction that cleaves protein backbones under mild conditions by fracturing the cysteine residues, thus generating heterogeneous peptides containing different moieties from the fractured cysteine. The peptide products were analyzed by high performance liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptides with a primary amine and a carboxylic acid as termini were observed, and others were found to contain amidated or formamidated carboxy termini, or formylated or glyoxylic amino termini. Formamidation of the carboxy terminus and the formation of glyoxylic amino terminus were unexpected reactions since both involve breaking of carbon—carbon bonds in cysteine.


Journal of Medicinal Chemistry | 2009

Novel Tricyclic Inhibitors of IκB Kinase

James Kempson; Steven H. Spergel; Junqing Guo; Claude A. Quesnelle; Patrice Gill; Dominique Belanger; Alaric J. Dyckman; Tianle Li; Scott H. Watterson; Charles M. Langevine; Jagabandhu Das; Robert V. Moquin; Joseph A. Furch; Anne Marinier; Marco Dodier; Alain Martel; David S. Nirschl; Katy Van Kirk; James R. Burke; Mark A. Pattoli; Kathleen M. Gillooly; Kim W. McIntyre; Laishun Chen; Zheng Yang; Punit Marathe; David Wang-Iverson; John H. Dodd; Murray McKinnon; Joel C. Barrish; William J. Pitts

The design and synthesis of a novel series of oxazole-, thiazole-, and imidazole-based inhibitors of IkappaB kinase (IKK) are reported. Biological activity was improved compared to the pyrazolopurine lead, and the expedient synthesis of the new tricyclic systems allowed for efficient exploration of structure-activity relationships. This, combined with an iterative rat cassette dosing strategy, was used to identify compounds with improved pharmacokinetic (PK) profiles to advance for in vivo evaluation.


Journal of Pharmacology and Experimental Therapeutics | 2009

Periodic, Partial Inhibition of IκB Kinase β-Mediated Signaling Yields Therapeutic Benefit in Preclinical Models of Rheumatoid Arthritis

Kathleen M. Gillooly; Mark A. Pattoli; Tracy L. Taylor; Laishun Chen; Lihong Cheng; Kurt R. Gregor; Gena S. Whitney; Vojkan Susulic; Scott H. Watterson; James Kempson; William J. Pitts; Hollie Booth-Lute; Guchen Yang; Paul Davies; Daniel W. Kukral; Joann Strnad; Kim W. McIntyre; Celia D'Arienzo; Luisa Salter-Cid; Zheng Yang; David Wang-Iverson; James R. Burke

We have previously shown that inhibitors of IκB kinase β (IKKβ), including 4(2′-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline (BMS-345541), are efficacious against experimental arthritis in rodents. In our efforts to identify an analog as a clinical candidate for the treatment of autoimmune and inflammatory disorders, we have discovered the potent and highly selective IKKβ inhibitor 2-methoxy-N-((6-(1-methyl-4-(methylamino)-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-7-yl)pyridin-2-yl)methyl)acetamide (BMS-066). Investigations of its pharmacology in rodent models of experimental arthritis showed that BMS-066 at doses of 5 and 10 mg/kg once daily was effective at protecting rats against adjuvant-induced arthritis, despite showing only weak inhibition at 10 mg/kg against a pharmacodymanic model of tumor necrosis factor α production in rats challenged with lipopolysaccharide. The duration of exposure in rats indicated that just 6 to 9 h of coverage per day of the concentration necessary to inhibit IKKβ by 50% in vivo was necessary for protection against arthritis. Similar findings were observed in the mouse collagen-induced arthritis model, with efficacy observed at a dose providing only 6 h of coverage per day of the concentration necessary to inhibit IKKβ by 50%. This finding probably results from the cumulative effect on multiple cellular mechanisms that contribute to autoimmunity and joint destruction, because BMS-066 was shown to inhibit a broad spectrum of activities such as T cell proliferation, B cell function, cytokine and interleukin secretion from monocytes, TH17 cell function and regulation, and osteoclastogenesis. Thus, only partial and transient inhibition of IKKβ is sufficient to yield dramatic benefit in vivo, and this understanding will be important in the clinical development of IKKβ inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2002

Molecular design and structure-activity relationships leading to the potent, selective, and orally active thrombin active site inhibitor BMS-189664.

Jagabandhu Das; S. David Kimball; Steven E. Hall; Wen-Ching Han; Edwin J. Iwanowicz; James Lin; Robert V. Moquin; Joyce A. Reid; John S. Sack; Mary F. Malley; ChiehYing Y. Chang; Saeho Chong; David Wang-Iverson; Daniel G.M. Roberts; Steven M. Seiler; William A. Schumacher; Martin L. Ogletree

A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.


Journal of Pharmaceutical and Biomedical Analysis | 2008

Separation of maxi-K channel opening 3-substitued-4-arylquinolinone atropisomers by enantioselective supercritical fluid chromatography

Jingfang Qian-Cutrone; Bireshwar Dasgupta; Edward S. Kozlowski; Richard A. Dalterio; David Wang-Iverson

Many 3-substituted-4-arylquinolinones containing an ortho substituent on the aryl ring were known as a class of compounds with maxi-K opening activity. These quinolinones, which contained a stereogenic axis in their structures due to their bulky ortho substituents on the two aryl rings, exhibited atropisomerism. The rotationally hindered atropisomers could have differential biological and pharmacological activity, and it was highly desirable to separate them and test the individual atropisomers in biological assays. To explore the potential of supercritical fluid chromatography (SFC) to separate the atropisomers of this class of compounds, six 3-substituted-4-arylquinolinones with various hydrophilic and hydrophobic substituents in various positions were screened using three alcoholic modifiers (methanol, ethanol and 2-propanol) with four polysaccharide-based chiral stationary phases (Chiralpak AD-H and AS-H, Chiralcel OD-H and OJ-H). Our results showed that all six compounds studied were successfully resolved under multiple SFC conditions regardless of their structural differences and polarity. The majority of the separations were completed within 10 min. The Chiralpak AD-H column appeared to be superior to the other three chiral columns, and methanol and ethanol showed higher successful rate than 2-propanol in separating atropisomers of this class of compounds. These SFC methods were efficient and easily scalable for preparative separation. Thus, SFC was found to be the methodology of choice for resolving the atropisomers of this class of compounds.


Bioorganic & Medicinal Chemistry Letters | 2011

Novel tricyclic inhibitors of IKK2: discovery and SAR leading to the identification of 2-methoxy-N-((6-(1-methyl-4-(methylamino)-1,6-dihydroimidazo[4,5-d]pyrrolo[2,3-b]pyridin-7-yl)pyridin-2-yl)methyl)acetamide (BMS-066).

Scott H. Watterson; Charles M. Langevine; Katy Van Kirk; James Kempson; Junquing Guo; Steven H. Spergel; Jagabandhu Das; Robert V. Moquin; Alaric J. Dyckman; David S. Nirschl; Kurt R. Gregor; Mark A. Pattoli; Xiaoxia Yang; Kim W. McIntyre; Guchen Yang; Michael A. Galella; Hollie Booth-Lute; Laishun Chen; Zheng Yang; David Wang-Iverson; Murray McKinnon; John H. Dodd; Joel C. Barrish; James R. Burke; William J. Pitts

The synthesis, structure-activity relationships (SAR), and biological results of pyridyl-substituted azaindole based tricyclic inhibitors of IKK2 are described. Compound 4m demonstrated potent in vitro potency, acceptable pharmacokinetic and physicochemical properties, and efficacy when dosed orally in a mouse model of inflammatory bowel disease.


Journal of Pharmaceutical and Biomedical Analysis | 2011

Chiral separation of potent corticotropin-releasing factor-1 receptor antagonists by supercritical fluid chromatography.

Jingfang Qian-Cutrone; Richard A. Hartz; Vijay T. Ahuja; Dauh-Rurng Wu; Richard A. Dalterio; David Wang-Iverson; Joanne J. Bronson

Pyrazinones bearing an N-1-alkyl chain with a chiral center have been reported as potent antagonists of the corticotropin-releasing factor-1 receptor (CRF1R). Separation of individual enantiomers for preclinical testing was an important aspect of lead optimization. To evaluate the applicability and efficiency of supercritical fluid chromatography (SFC) for enantiomeric resolution of this class of compounds, enantiomeric pairs of eight pyrazinones with different structural characteristics were tested under an array of SFC conditions. The results showed that pyrazinones with a 1-cyclopropyl-2-methoxyethyl substituent were readily separated with a Chiralpak AD-H or Chiralcel OD-H column with ethanol as the modifier. On the other hand, analogs with a less polar alkyl substituent were not amenable to the general method and required further optimization of the chromatographic conditions. In addition, structural variations on the pyrazinone core and aromatic moiety had an impact on the chiral resolution of this class of compounds. This investigation led to the development of efficient chiral SFC methods for separating all eight pyrazinone enantiomeric pairs encompassing an array of structural variations.


Journal of Chromatography B | 2008

Development and implementation of a stereoselective normal-phase liquid chromatography–tandem mass spectrometry method for the determination of intrinsic metabolic clearance in human liver microsomes

Yingru Zhang; Christian Caporuscio; Jun Dai; Michael Witkus; Anne Rose; Joseph B. Santella; Celia D'Arienzo; David Wang-Iverson; Adrienne A. Tymiak

The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated with R2 > or =0.997. The precision of the analysis was <5% R.S.D. at or above the nominal concentration of 80 ng/mL, and <20% R.S.D. at 8 ng/mL. The mean bias was less than 15%. Extraction recovery and acceptable matrix interference were demonstrated using one isomer and the ketone, and better than 75% recovery and less than 25% ion suppression or interference were found. The method was successfully implemented for an in vitro intrinsic metabolic clearance study.

Collaboration


Dive into the David Wang-Iverson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge