Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agata Desantis is active.

Publication


Featured researches published by Agata Desantis.


Journal of Cell Science | 2007

NRAGE associates with the anti-apoptotic factor Che-1 and regulates its degradation to induce cell death

Maria Grazia Di Certo; Nicoletta Corbi; Tiziana Bruno; Simona Iezzi; Francesca De Nicola; Agata Desantis; Maria Teresa Ciotti; Elisabetta Mattei; Aristide Floridi; Maurizio Fanciulli; Claudio Passananti

Neurotrophin receptor-interacting MAGE homolog (NRAGE) has been recently identified as a cell-death inducer, involved in molecular events driving cells through apoptotic networks during neuronal development. Recently, we have focused on the functional role of Che-1, also known as apoptosis-antagonizing transcription factor (AATF), a protein involved in cell cycle control and gene transcription. Increasing evidence suggests that Che-1 is involved in apoptotic signalling in neural tissues. In cortical neurons Che-1 exhibits an anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid β-peptide. Here, we report that Che-1 interacts with NRAGE and that an EGFP-NRAGE fusion protein inhibits nuclear localization of Che-1, by sequestering it within the cytoplasmic compartment. Furthermore, NRAGE overexpression downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. Finally, we propose that Che-1 is a functional antagonist of NRAGE, because its overexpression completely reverts NRAGE-induced cell-death.


PLOS ONE | 2007

Utrophin up-regulation by an artificial transcription factor in transgenic mice.

Elisabetta Mattei; Nicoletta Corbi; Maria Grazia Di Certo; Georgios Strimpakos; Cinzia Severini; Annalisa Onori; Agata Desantis; Valentina Libri; Serena Buontempo; Aristide Floridi; Maurizio Fanciulli; Dilair Baban; Kay E. Davies; Claudio Passananti

Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.


Cancer Cell | 2010

Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation

Tiziana Bruno; Agata Desantis; Gianluca Bossi; Silvia Di Agostino; Cristina Sorino; Francesca De Nicola; Simona Iezzi; Annapaola Franchitto; Barbara Benassi; Sergio Galanti; Francesca La Rosa; Aristide Floridi; Alfonso Bellacosa; Claudio Passananti; Giovanni Blandino; Maurizio Fanciulli

Che-1 is a RNA polymerase II binding protein involved in the regulation of gene transcription and, in response to DNA damage, promotes p53 transcription. In this study, we investigated whether Che-1 regulates mutant p53 expression. We found that Che-1 is required for sustaining mutant p53 expression in several cancer cell lines, and that Che-1 depletion by siRNA induces apoptosis both in vitro and in vivo. Notably, loss of Che-1 activates DNA damage checkpoint response and induces transactivation of p73. Therefore, these findings underline the important role that Che-1 has in survival of cells expressing mutant p53.


The EMBO Journal | 2015

Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy

Agata Desantis; Tiziana Bruno; Valeria Catena; Francesca De Nicola; Frauke Goeman; Simona Iezzi; Cristina Sorino; Maurilio Ponzoni; Gianluca Bossi; Vincenzo Federico; Francesca La Rosa; Maria Rosaria Ricciardi; Elena Lesma; Paolo D'Onorio De Meo; Tiziana Castrignanò; Maria Teresa Petrucci; Francesco Pisani; Marta Chesi; P. Leif Bergsagel; Aristide Floridi; Giovanni Tonon; Claudio Passananti; Giovanni Blandino; Maurizio Fanciulli

Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che‐1, a RNA polymerase II‐binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che‐1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress‐induced autophagy. Strikingly, Che‐1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.


Cell Death & Differentiation | 2008

Che-1 activates XIAP expression in response to DNA damage.

Tiziana Bruno; Simona Iezzi; F De Nicola; M. Di Padova; Agata Desantis; Marco Scarsella; M G Di Certo; Carlo Leonetti; Aristide Floridi; Claudio Passananti; Maurizio Fanciulli

X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis proteins family that selectively binds and inhibits caspase-3, -7 and -9. As such, XIAP is an extremely potent suppressor of apoptosis and an attractive target for cancer treatment. Che-1 is an antiapoptotic agent involved in the control of gene transcription and cell proliferation. Recently, we showed that the checkpoint kinases ATM/ATR and checkpoint kinase 2 physically and functionally interact with Che-1 and promote its phosphorylation and accumulation in response to DNA damage. These Che-1 modifications induce transcription of p53, and Che-1 depletion strongly sensitizes tumor cells to anticancer drugs. Here we show that Che-1 activates XIAP expression in response to DNA damage. This effect is mediated by Che-1 phosphorylation and requires NF-κB. Notably, we found that XIAP expression is necessary for antiapoptotic activity of Che-1 and that in vivo downregulation of Che-1 by small interference RNA strongly enhanced the cytotoxicity of anticancer drugs.


Cell Death and Disease | 2015

Che-1 modulates the decision between cell cycle arrest and apoptosis by its binding to p53

Agata Desantis; Tiziana Bruno; Valeria Catena; F De Nicola; Frauke Goeman; Simona Iezzi; Cristina Sorino; M P Gentileschi; S Germoni; V Monteleone; M Pellegrino; M Kann; P D De Meo; Matteo Pallocca; Katja Höpker; Francesca Moretti; Elisabetta Mattei; H C Reinhardt; Aristide Floridi; Claudio Passananti; Thomas Benzing; Giovanni Blandino; Maurizio Fanciulli

The tumor suppressor p53 is mainly involved in the transcriptional regulation of a large number of growth-arrest- and apoptosis-related genes. However, a clear understanding of which factor/s influences the choice between these two opposing p53-dependent outcomes remains largely elusive. We have previously described that in response to DNA damage, the RNA polymerase II-binding protein Che-1/AATF transcriptionally activates p53. Here, we show that Che-1 binds directly to p53. This interaction essentially occurs in the first hours of DNA damage, whereas it is lost when cells undergo apoptosis in response to posttranscriptional modifications. Moreover, Che-1 sits in a ternary complex with p53 and the oncosuppressor Brca1. Accordingly, our analysis of genome-wide chromatin occupancy by p53 revealed that p53/Che1 interaction results in preferential transactivation of growth arrest p53 target genes over its pro-apoptotic target genes. Notably, exposure of Che-1+/− mice to ionizing radiations resulted in enhanced apoptosis of thymocytes, compared with WT mice. These results confirm Che-1 as an important regulator of p53 activity and suggest Che-1 to be a promising yet attractive drug target for cancer therapy.


Biochemistry and Cell Biology | 2007

The artificial 4-zinc-finger protein Bagly binds human utrophin promoter A at the endogenous chromosomal site and activates transcription.

Annalisa Onori; Agata Desantis; Serena Buontempo; Maria Grazia Di Certo; Maurizio Fanciulli; Luisa Salvatori; Claudio Passananti; Nicoletta Corbi

Our aim is to upregulate the expression of the dystrophin-related gene utrophin in Duchenne muscular dystrophy, in this way complementing the lack of dystrophin function. To achieve utrophin upregulation, we designed and engineered synthetic zinc-finger based transcription factors. We have previously shown that the artificial 3-zinc-finger protein Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from utrophin promoter A. Here we report a novel artificial 4-zinc-finger protein, Bagly, which binds with optimized affinity-specificity to a 12 bp DNA target sequence that is internal to human utrophin promoter A. Bagly was generated adding to Jazz protein an extra-fourth zinc finger, derived from transcription factor YY1. Importantly, the Bagly DNA target sequence is statistically present in the human genome only 210 times, about 60 fewer times than the 9 bp Jazz DNA target sequence. Thanks to its additional zinc-finger domain, Bagly protein shows enhanced transcriptional activity. Moreover, we demonstrated Baglys effective access and binding to active chromatin in the chromosomal context and its ability to upregulate endogenous utrophin.


Journal of Biological Chemistry | 2013

Centrosomal Che-1 Protein Is Involved in the Regulation of Mitosis and DNA Damage Response by Mediating Pericentrin (PCNT)-dependent Chk1 Protein Localization

Cristina Sorino; Tiziana Bruno; Agata Desantis; Maria Grazia Di Certo; Simona Iezzi; Francesca De Nicola; Valeria Catena; Aristide Floridi; Luciana Chessa; Claudio Passananti; Enrico Cundari; Maurizio Fanciulli

Background: Che-1 is an RNA polymerase II-binding protein involved in gene transcription, cell proliferation, and DNA damage response. Results: Che-1 localizes at interphase centrosomes. Che-1 inhibition abolishes Chk1 localization at centrosomes, advancing entry into mitosis. Conclusion: Che-1 acts like an upstream regulator of Chk1 centrosomal functions. Significance: Che-1 inhibition might potentiate tumor cell sensitivity to antimitotic drugs. To combat threats posed by DNA damage, cells have evolved mechanisms, collectively termed DNA damage response (DDR). These mechanisms detect DNA lesions, signal their presence, and promote their repair. Centrosomes integrate G2/M checkpoint control and repair signals in response to genotoxic stress, acting as an efficient control mechanism when G2/M checkpoint function fails and mitosis begins in the presence of damaged DNA. Che-1 is an RNA polymerase II-binding protein involved in the regulation of gene transcription, induction of cell proliferation, and DDR. Here we provide evidence that in addition to its nuclear localization, Che-1 localizes at interphase centrosomes, where it accumulates following DNA damage or spindle poisons. We show that Che-1 depletion generates supernumerary centrosomes, multinucleated cells, and multipolar spindle formation. Notably, Che-1 depletion abolishes the ability of Chk1 to bind pericentrin and to localize at centrosomes, which, in its turn, deregulates the activation of centrosomal cyclin B-Cdk1 and advances entry into mitosis. Our results reinforce the notion that Che-1 plays an important role in DDR and that its contribution seems to be relevant for the spindle assembly checkpoint.


Neuromuscular Disorders | 2009

Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation

Agata Desantis; Annalisa Onori; Maria Grazia Di Certo; Elisabetta Mattei; Maurizio Fanciulli; Claudio Passananti; Nicoletta Corbi

Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.


Cell Death and Disease | 2014

HIPK2 sustains apoptotic response by phosphorylating Che-1/AATF and promoting its degradation

F De Nicola; Valeria Catena; C Rinaldo; Tiziana Bruno; Simona Iezzi; Cristina Sorino; Agata Desantis; S Camerini; Marco Crescenzi; Aristide Floridi; Claudio Passananti; Silvia Soddu; Maurizio Fanciulli

Che-1/AATF is an RNA polymerase II-binding protein that is involved in the regulation of gene transcription, which undergoes stabilization and accumulation in response to DNA damage. We have previously demonstrated that following apoptotic induction, Che-1 protein levels are downregulated through its interaction with the E3 ligase HDM2, which leads to Che-1 degradation by ubiquitylation. This interaction is mediated by Pin1, which determines a phosphorylation-dependent conformational change. Here we demonstrate that HIPK2, a proapoptotic kinase, is involved in Che-1 degradation. HIPK2 interacts with Che-1 and, upon genotoxic stress, phosphorylates it at specific residues. This event strongly increases HDM2/Che-1 interaction and degradation of Che-1 protein via ubiquitin-dependent proteasomal system. In agreement with these findings, we found that HIPK2 depletion strongly decreases Che-1 ubiquitylation and degradation. Notably, Che-1 overexpression strongly counteracts HIPK2-induced apoptosis. Our results establish Che-1 as a new HIPK2 target and confirm its important role in the cellular response to DNA damage.

Collaboration


Dive into the Agata Desantis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Passananti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicoletta Corbi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge