Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agata Jurczyk is active.

Publication


Featured researches published by Agata Jurczyk.


General and Comparative Endocrinology | 2011

Dynamic Glucoregulation and Mammalian-Like Responses to Metabolic and Developmental Disruption in Zebrafish

Agata Jurczyk; Nicole M. Roy; Rabia Bajwa; Philipp Gut; Kathryn L. Lipson; Chaoxing Yang; Laurence D. Covassin; Waldemar J. Racki; Aldo A. Rossini; Nancy E. Phillips; Didier Y. R. Stainier; Dale L. Greiner; Michael A. Brehm; Rita Bortell; Philip diIorio

Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not a genetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease.


Cell Death & Differentiation | 2010

AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1.

S Ishigaki; S G Fonseca; C M Oslowski; Agata Jurczyk; J R Shearstone; Lihua Julie Zhu; M A Permutt; Dale L. Greiner; Rita Bortell; Fumihiko Urano

Endoplasmic reticulum (ER) stress-mediated cell death has an important role in the pathogenesis of chronic diseases, including diabetes and neurodegeneration. Although proapoptotic programs activated by ER stress have been extensively studied, identification and characterization of antiapoptotic programs that counteract ER stress are currently incomplete. Through the gene expression profiling of β-cells lacking Wolfram syndrome 1 gene (WFS1), a causative gene for Wolfram syndrome, we discovered a novel antiapoptotic gene of the unfolded protein response (UPR), apoptosis antagonizing transcription factor (AATF). Here, we study the regulation of AATF, identify its target genes, and determine the basis for its antiapoptotic activities in response to ER stress. We show that AATF is induced by ER stress through the PERK–eIF2α pathway and transcriptionally activates the v-akt murine thymoma viral oncogene homolog 1 (AKT1) gene through signal transducer and activator of transcription 3 (Stat3), which sustains Akt1 activation and promotes cell survival. Ectopic expression of AATF or a constitutively active form of AKT1 confers on cells resistance to ER stress-mediated cell death, whereas RNAi-mediated knockdown of AATF or AKT1 renders cells sensitive to ER stress. We also discovered a positive crosstalk between the AATF and WFS1 signaling pathways. Thus, WFS1 deficiency or AATF deficiency mediates a self-perpetuating cycle of cell death. Our results reveal a novel antiapoptotic program relevant to the treatment of diseases caused by ER stress-mediated cell death.


PLOS ONE | 2009

CHOP Mediates Endoplasmic Reticulum Stress-Induced Apoptosis in Gimap5-Deficient T Cells

Steven C. Pino; Bryan O'Sullivan-Murphy; Erich A. Lidstone; Chaoxing Yang; Kathryn L. Lipson; Agata Jurczyk; Philip diIorio; Michael A. Brehm; John P. Mordes; Dale L. Greiner; Aldo A. Rossini; Rita Bortell

Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5−/− BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5−/− T cells. Knockdown of CHOP by siRNA protected Gimap5−/− T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells.


Diabetologia | 2013

Pathological endoplasmic reticulum stress mediated by the IRE1 pathway contributes to pre-insulitic beta cell apoptosis in a virus-induced rat model of type 1 diabetes

Chaoxing Yang; Philip diIorio; Agata Jurczyk; Bryan O’Sullivan-Murphy; Fumihiko Urano; Rita Bortell

Aims/hypothesisWe hypothesised that pathological endoplasmic reticulum (ER) stress contributes to beta cell death during development of type 1 diabetes. In this study, we investigated the occurrence of beta cell ER stress and the signalling pathways involved during discrete stages of autoimmune diabetes progression. The virus-inducible BBDR rat model was used to systematically interrogate the three main ER stress signalling pathways (IRE1 [inositol-requiring protein-1], PERK [double-stranded RNA-dependent protein kinase (PKR)-like ER kinase] and ATF6 [activating transcription factor 6]) in pancreatic beta cells during type 1 diabetes development.MethodsER stress and apoptotic markers were assessed by immunoblot analyses of isolated pancreatic islets and immunofluorescence staining of pancreas sections from control and virus-induced rats. Various time points were analysed: (1) early stages preceding the development of insulitis and (2) a late stage during onset and progression of insulitis, which precedes overt hyperglycaemia.ResultsThe IRE1 pathway, including its downstream component X-box-binding protein 1, was specifically activated in pancreatic beta cells of virus-induced rats at early stages preceding the development of insulitis. Furthermore, ER stress-specific pro-apoptotic caspase 12 and effector caspase 3 were also activated at this stage. Activation of PERK and its downstream effector pro-apoptotic CHOP (CCAAT/-enhancer-binding-protein homologous protein), only occurred during late stages of diabetes induction concurrent with insulitis, whereas ATF6 activation in pancreatic beta cells was similar in control and virus-induced rats.Conclusions/interpretationActivation of the IRE1 pathway and ER stress-specific pro-apoptotic caspase 12, before the development of insulitis, are indicative of ER stress-mediated beta cell damage. The early occurrence of pathological ER stress and death in pancreatic beta cells may contribute to the initiation and/or progression of virus-induced autoimmune diabetes.


Cell Stress & Chaperones | 2008

Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response

Steven C. Pino; Bryan O’Sullivan-Murphy; Erich A. Lidstone; Thomas B. Thornley; Agata Jurczyk; Fumihiko Urano; Dale L. Greiner; John P. Mordes; Aldo A. Rossini; Rita Bortell

T cell receptor (TCR) ligation (signal one) in the presence of co-stimulation (signal two) results in downstream signals that increase protein production enabling naïve T cells to fully activate and gain effector function. Enhanced production of proteins by a cell requires an increase in endoplasmic reticulum (ER) chaperone expression, which is accomplished through activation of a cellular mechanism known as the ER stress response. The ER stress response is initiated during the cascade of events that occur for the activation of many cells; however, this process has not been comprehensively studied for T cell function. In this study, we used primary T cells and mice circulating TCR transgenic CD8+ T cells to investigate ER chaperone expression in which TCR signaling was initiated in the presence or absence of co-stimulation. In the presence of both signals, in vitro and in vivo analyses demonstrated induction of the ER stress response, as evidenced by elevated expression of GRP78 and other ER chaperones. Unexpectedly, ER chaperones were also increased in T cells exposed only to signal one, a treatment known to cause T cells to enter the ‘nonresponsive’ states of anergy and tolerance. Treatment of T cells with an inhibitor to protein kinase C (PKC), a serine/threonine protein kinase found downstream of TCR signaling, indicated PKC is involved in the induction of the ER stress response during the T cell activation process, thus revealing a previously unknown role for this signaling protein in T cells. Collectively, these data suggest that induction of the ER stress response through PKC signaling is an important component for the preparation of a T cell response to antigen.


PLOS ONE | 2010

A Novel Role for the Centrosomal Protein, Pericentrin, in Regulation of Insulin Secretory Vesicle Docking in Mouse Pancreatic β-cells

Agata Jurczyk; Steven C. Pino; Bryan O'Sullivan-Murphy; Martha Addorio; Erich A. Lidstone; Philip diIorio; Kathryn L. Lipson; Clive Standley; Kevin E. Fogarty; Lawrence M. Lifshitz; Fumihiko Urano; John P. Mordes; Dale L. Greiner; Aldo A. Rossini; Rita Bortell

The centrosome is important for microtubule organization and cell cycle progression in animal cells. Recently, mutations in the centrosomal protein, pericentrin, have been linked to human microcephalic osteodysplastic primordial dwarfism (MOPD II), a rare genetic disease characterized by severe growth retardation and early onset of type 2 diabetes among other clinical manifestations. While the link between centrosomal and cell cycle defects may account for growth deficiencies, the mechanism linking pericentrin mutations with dysregulated glucose homeostasis and pre-pubertal onset of diabetes is unknown. In this report we observed abundant expression of pericentrin in quiescent pancreatic β-cells of normal animals which led us to hypothesize that pericentrin may have a critical function in β-cells distinct from its known role in regulating cell cycle progression. In addition to the typical centrosome localization, pericentrin was also enriched with secretory vesicles in the cytoplasm. Pericentrin overexpression in β-cells resulted in aggregation of insulin-containing secretory vesicles with cytoplasmic, but not centrosomal, pericentriolar material and an increase in total levels of intracellular insulin. RNAi- mediated silencing of pericentrin in secretory β-cells caused dysregulated secretory vesicle hypersecretion of insulin into the media. Together, these data suggest that pericentrin may regulate the intracellular distribution and secretion of insulin. Mice transplanted with pericentrin-depleted islets exhibited abnormal fasting hypoglycemia and inability to regulate blood glucose normally during a glucose challenge, which is consistent with our in vitro data. This previously unrecognized function for a centrosomal protein to mediate vesicle docking in secretory endocrine cells emphasizes the adaptability of these scaffolding proteins to regulate diverse cellular processes and identifies a novel target for modulating regulated protein secretion in disorders such as diabetes.


Pancreas | 2011

Hyperglycemia-induced proliferation of adult human beta cells engrafted into spontaneously diabetic immunodeficient NOD-Rag1null IL2rγnull Ins2Akita mice.

Philip diIorio; Agata Jurczyk; Chaoxing Yang; Waldemar J. Racki; Michael A. Brehm; Mark A. Atkinson; Alvin C. Powers; Leonard D. Shultz; Dale L. Greiner; Rita Bortell

Impaired insulin secretion by the pancreatic beta cell and a reduction in beta cell mass are central to the pathogenesis of type 1 and type 2 diabetes. An ideal approach for treating individuals with diabetes is to develop modalities that increase beta cell numbers by inducing their proliferation in situ. Much evidence demonstrates that, in rodents, beta cells exhibit robust proliferative capacity both in vitro and in vivo. Induction of mouse beta cell


Journal of Biological Chemistry | 2016

Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia

Rachel J. Roth Flach; Laura V. Danai; Marina T. DiStefano; Mark Kelly; Lorena Garcia Menendez; Agata Jurczyk; Rohit B. Sharma; Dae Young Jung; Jong Hun Kim; Jason K. Kim; Rita Bortell; Laura C. Alonso; Michael P. Czech

Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice.


The FASEB Journal | 2016

Beyond the brain: disrupted in schizophrenia 1 regulates pancreatic β-cell function via glycogen synthase kinase-3β

Agata Jurczyk; Anetta Nowosielska; Natalia Przewozniak; Ken-Edwin Aryee; Philip diIorio; David M. Blodgett; Chaoxing Yang; Martha Campbell-Thompson; Mark A. Atkinson; Leonard D. Shultz; Ann R. Rittenhouse; David M. Harlan; Dale L. Greiner; Rita Bortell

Individuals with schizophrenia and their first‐degree relatives have higher rates of type 2 diabetes (T2D) than the general population (18–30 vs. 1.2–6.3%), independent of body mass index and antipsychotic medication, suggesting shared genetic components may contribute to both diseases. The cause of this association remains unknown. Mutations in disrupted in schizophrenia 1 (DISC1) increase the risk of developing psychiatric disorders [logarithm (base 10) of odds = 7.1]. Here, we identified DISC1 as a major player controlling pancreatic β‐cell proliferation and insulin secretion via regulation of glycogen synthase kinase‐3β (GSK3β). DISC1 expression was enriched in developing mouse and human pancreas and adult β‐ and ductal cells. Loss of DISC1 function, through siRNA‐mediated depletion or expression of a dominant‐negative truncation that models the chromosomal translocation of human DISC1 in schizophrenia, resulted in decreased β‐cell proliferation (3 vs. 1%; P< 0.01), increased apoptosis (0.1 vs. 0.6%; P< 0.01), and glucose intolerance in transgenic mice. Insulin secretion was reduced (0.5 vs. 0.1 ng/ml; P < 0.05), and critical β‐cell transcription factors Pdx1 and Nkx6.1 were significantly decreased. Impaired DISC1 allowed inappropriate activation of GSK3β in β cells, and antagonizing GSK3β (SB216763; IC50 = 34.3 nM) rescued the β‐cell defects. These results uncover an unexpected role for DISC1 in normal β‐cell physiology and suggest that DISC1 dysregulation contributes to T2D independently of its importance for cognition.—Jurczyk, A., Nowosielska, A., Przewozniak, N., Aryee, K.‐E., DiIorio, P., Blodgett, D., Yang, C., Campbell‐Thompson, M., Atkinson, M., Shultz, L., Rittenhouse, A., Harlan, D., Greiner, D., Bortell, R. Beyond the brain: disrupted in schizophrenia 1 regulates pancreatic β‐cell function via glycogen synthase kinase‐3β. FASEB J. 30, 983–993 (2016). www.fasebj.org


PLOS ONE | 2013

Salicylate prevents virus-induced type 1 diabetes in the BBDR rat.

Chaoxing Yang; Agata Jurczyk; Philip diIorio; Elaine Norowski; Michael A. Brehm; Christian W. Grant; Dennis L. Guberski; Dale L. Greiner; Rita Bortell

Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.

Collaboration


Dive into the Agata Jurczyk's collaboration.

Top Co-Authors

Avatar

Rita Bortell

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Dale L. Greiner

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Chaoxing Yang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Philip diIorio

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Michael A. Brehm

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Fumihiko Urano

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Leonard D. Shultz

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Aldo A. Rossini

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Ann R. Rittenhouse

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

David M. Harlan

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge