Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Agnès Ribeiro is active.

Publication


Featured researches published by Agnès Ribeiro.


Nature | 2008

Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma

Isabelle Janoueix-Lerosey; Delphine Lequin; Laurence Brugières; Agnès Ribeiro; Loïc de Pontual; Valérie Combaret; Virginie Raynal; Alain Puisieux; Gudrun Schleiermacher; Gaëlle Pierron; Dominique Valteau-Couanet; Thierry Frebourg; Jean Michon; Stanislas Lyonnet; Jeanne Amiel; Olivier Delattre

Neuroblastoma, a tumour derived from the peripheral sympathetic nervous system, is one of the most frequent solid tumours in childhood. It usually occurs sporadically but familial cases are observed, with a subset of cases occurring in association with congenital malformations of the neural crest being linked to germline mutations of the PHOX2B gene. Here we conducted genome-wide comparative genomic hybridization analysis on a large series of neuroblastomas. Copy number increase at the locus encoding the anaplastic lymphoma kinase (ALK) tyrosine kinase receptor was observed recurrently. One particularly informative case presented a high-level gene amplification that was strictly limited to ALK, indicating that this gene may contribute on its own to neuroblastoma development. Through subsequent direct sequencing of cell lines and primary tumour DNAs we identified somatic mutations of the ALK kinase domain that mainly clustered in two hotspots. Germline mutations were observed in two neuroblastoma families, indicating that ALK is a neuroblastoma predisposition gene. Mutated ALK proteins were overexpressed, hyperphosphorylated and showed constitutive kinase activity. The knockdown of ALK expression in ALK-mutated cells, but also in cell lines overexpressing a wild-type ALK, led to a marked decrease of cell proliferation. Altogether, these data identify ALK as a critical player in neuroblastoma development that may hence represent a very attractive therapeutic target in this disease that is still frequently fatal with current treatments.


Journal of Clinical Oncology | 2009

Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma

Isabelle Janoueix-Lerosey; Gudrun Schleiermacher; Evi Michels; Véronique Mosseri; Agnès Ribeiro; Delphine Lequin; Joëlle Vermeulen; Jérôme Couturier; Michel Peuchmaur; Alexander Valent; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Caroline Thomas; Valérie Combaret; Raphael Rousseau; Angelika Eggert; Jean Michon; Frank Speleman; Olivier Delattre

PURPOSE For a comprehensive overview of the genetic alterations of neuroblastoma, their association and clinical significance, we conducted a whole-genome DNA copy number analysis. PATIENTS AND METHODS A series of 493 neuroblastoma (NB) samples was investigated by array-based comparative genomic hybridization in two consecutive steps (224, then 269 patients). RESULTS Genomic analysis identified several types of profiles. Tumors presenting exclusively whole-chromosome copy number variations were associated with excellent survival. No disease-related death was observed in this group. In contrast, tumors with any type of segmental chromosome alterations characterized patients with a high risk of relapse. Patients with both numerical and segmental abnormalities clearly shared the higher risk of relapse of segmental-only patients. In a multivariate analysis, taking into account the genomic profile, but also previously described individual genetic and clinical markers with prognostic significance, the presence of segmental alterations with (HR, 7.3; 95% CI, 3.7 to 14.5; P < .001) or without MYCN amplification (HR, 4.5; 95% CI, 2.4 to 8.4; P < .001) was the strongest predictor of relapse; the other significant variables were age older than 18 months (HR, 1.8; 95% CI, 1.2 to 2.8; P = .004) and stage 4 (HR, 1.8; 95% CI, 1.2 to 2.7; P = .005). Finally, within tumors showing segmental alterations, stage 4, age, MYCN amplification, 1p and 11q deletions, and 1q gain were independent predictors of decreased overall survival. CONCLUSION The analysis of the overall genomic pattern, which probably unravels particular genomic instability mechanisms rather than the analysis of individual markers, is essential to predict relapse in NB patients. It adds critical prognostic information to conventional markers and should be included in future treatment stratification.


PLOS ONE | 2012

MED12 Alterations in Both Human Benign and Malignant Uterine Soft Tissue Tumors

Gaëlle Pérot; Sabrina Croce; Agnès Ribeiro; Pauline Lagarde; Valérie Velasco; Agnès Neuville; Jean-Michel Coindre; Eberhard Stoeckle; Anne Floquet; Gaëtan MacGrogan; Frédéric Chibon

The relationship between benign uterine leiomyomas and their malignant counterparts, i.e. leiomyosarcomas and smooth muscle tumors of uncertain malignant potential (STUMP), is still poorly understood. The idea that a leiomyosarcoma could derive from a leiomyoma is still controversial. Recently MED12 mutations have been reported in uterine leiomyomas. In this study we asked whether such mutations could also be involved in leiomyosarcomas and STUMP oncogenesis. For this purpose we examined 33 uterine mesenchymal tumors by sequencing the hot-spot mutation region of MED12. We determined that MED12 is altered in 66.6% of typical leiomyomas as previously reported but also in 11% of STUMP and 20% of leiomyosarcomas. The mutated allele is predominantly expressed in leiomyomas and STUMP. Interestingly all classical leiomyomas exhibit MED12 protein expression while 40% of atypical leiomyomas, 50% of STUMP and 80% of leiomyosarcomas (among them the two mutated ones) do not express MED12. All these tumors without protein expression exhibit complex genomic profiles. No mutations and no expression loss were identified in an additional series of 38 non-uterine leiomyosarcomas. MED12 mutations are not exclusive to leiomyomas but seem to be specific to uterine malignancies. A previous study has suggested that MED12 mutations in leiomyomas could lead to Wnt/β-catenin pathway activation however our immunohistochemistry results show that there is no association between MED12 status and β-catenin nuclear/cytoplasmic localization. Collectively, our results show that subgroups of benign and malignant tumors share a common genetics. We propose here that MED12 alterations could be implicated in the development of smooth muscle tumor and that its expression could be inhibited in malignant tumors.


Journal of Clinical Oncology | 2010

Accumulation of Segmental Alterations Determines Progression in Neuroblastoma

Gudrun Schleiermacher; Isabelle Janoueix-Lerosey; Agnès Ribeiro; Jerzy Klijanienko; Jérôme Couturier; Gaëlle Pierron; Véronique Mosseri; Alexander Valent; Nathalie Auger; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Franck Bourdeaut; Valérie Combaret; Christophe Bergeron; Jean Michon; Olivier Delattre

PURPOSE Neuroblastoma is characterized by two distinct types of genetic profiles, consisting of either numerical or segmental chromosome alterations. The latter are associated with a higher risk of relapse, even when occurring together with numerical alterations. We explored the role of segmental alterations in tumor progression and the possibility of evolution from indolent to aggressive genomic types. PATIENTS AND METHODS Array-based comparative genomic hybridization data of 394 neuroblastoma samples were analyzed and linked to clinical data. RESULTS Integration of ploidy and genomic data indicated that pseudotriploid tumors with mixed numerical and segmental profiles may be derived from pseudotriploid tumors with numerical alterations only. This was confirmed by the analysis of paired samples, at diagnosis and at relapse, as in tumors with a purely numerical profile at diagnosis additional segmental alterations at relapse were frequently observed. New segmental alterations at relapse were also seen in patients with segmental alterations at diagnosis. This was not linked to secondary effects of cytotoxic treatments since it occurred even in patients treated with surgery alone. A higher number of chromosome breakpoints were correlated with advanced age at diagnosis, advanced stage of disease, with a higher risk of relapse, and a poorer outcome. CONCLUSION These data provide further evidence of the role of segmental alterations, suggesting that tumor progression is linked to the accumulation of segmental alterations in neuroblastoma. This possibility of genomic evolution should be taken into account in treatment strategies of low- and intermediate-risk neuroblastoma and should warrant biologic reinvestigation at the time of relapse.


Genes, Chromosomes and Cancer | 2014

Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material

Francois Le Loarer; Lei Zhang; Christopher D. M. Fletcher; Agnès Ribeiro; Samuel Singer; Antoine Italiano; Agnès Neuville; Aurélie Houlier; Frédéric Chibon; Jean-Michel Coindre; Cristina R. Antonescu

Epithelioid sarcomas (ES) are mesenchymal neoplasms subclassified into distal and proximal subtypes based on their distinct clinical presentations and histologic features. Consistent loss of SMARCB1 nuclear expression has been considered as the hallmark abnormality for both subtypes, a feature shared with atypical teratoid/rhabdoid tumor of infancy (ATRT). While virtually all ATRTs harbor underlying SMARCB1 somatic or germline alterations, mechanisms of SMARCB1 inactivation in ES are less well defined. To further define mechanisms of SMARCB1 inactivation a detailed molecular analysis was performed on 40 ES (25 proximal and 15 distal ES, with classic morphology and negative SMARCB1 expression) for their genomic status of SMARCB1 and related genes encoding the SWI/SNF subunits (PBRM1, BRG1, BRM, SMARCC1/2 and ARID1A) by FISH using custom BAC probes. An additional control group was included spanning a variety of 41 soft tissue neoplasms with either rhabdoid/epithelioid features or selected histotypes previously shown to lack SMARCB1 by IHC. Furthermore, 12 ES were studied by array CGH (aCGH) and an independent TMA containing 50 additional ES cases was screened for Aurora Kinase A (AURKA) and cyclin D1 immunoexpression. Homozygous SMARCB1 deletions were found by FISH in 36/40 ES (21/25 proximal‐type). One of the distal‐type ES displayed homozygous SMARCB1 deletion in the tumor cells, along with a heterozygous deletion within normal tissue, finding confirmed by array CGH. None of the proximal ES lacking homozygous SMARCB1 deletions displayed alterations in other SWI/SNF subunits gene members. Among controls, only the SMARCB1‐immunonegative myoepithelial carcinomas displayed SMARCB1 homozygous deletions in 3/5 cases, while no gene specific abnormalities were seen among all other histologic subtypes of sarcomas tested regardless of the SMARCB1 protein status. There was no consistent pattern of AURKA and Cyclin D1 expression. The array CGH was successful in 9/12 ES, confirming the SMARCB1 and other SWI/SNF genes copy numbers detected by FISH. Our study confirms the shared pathogenesis of proximal and distal ES, showing consistent SMARCB1 homozygous deletions. Additionally we report the first ES case associated with a SMARCB1 constitutional deletion, establishing a previously undocumented link with ATRT. Alternative mechanisms of SMARCB1 inactivation in SMARCB1‐disomic ES remain to be identified, but appear unrelated to large genomic abnormalities in other SWI/SNF subunits.


PLOS ONE | 2014

Identification of a Recurrent STRN/ALK Fusion in Thyroid Carcinomas

Gaëlle Pérot; Isabelle Soubeyran; Agnès Ribeiro; Benjamin Bonhomme; Frédérique Savagner; Nathalie Boutet-Bouzamondo; Isabelle Hostein; Françoise Bonichon; Yann Godbert; Frédéric Chibon

Thyroid carcinoma is the most common endocrine malignant tumor and accounts for 1% of all new malignant diseases. Among all types and subtypes of thyroid cancers that have been described so far, papillary thyroid carcinoma is the most frequent. The standard management treatment of these tumors consists of surgery, followed by radioiodine treatment in case of high risk of relapse. The most aggressive forms are commonly treated by chemotherapy, radiotherapy or experimental drug testing. We recently reported the case of a patient presenting an anaplastic thyroid carcinoma with lung metastases. Fluorescence in situ hybridization analysis allowed us to detect a rearrangement of the anaplastic lymphoma kinase (ALK) gene in both tumors. The patient was treated with crizotinib and presented an excellent drug response. We present here the subsequent investigations carried out to further characterize this genetic alteration and to assess the prevalence of ALK rearrangements in thyroid lesions. High resolution array-comparative genomic hybridization data complemented by RT-PCR and sequencing analyses, allowed us to demonstrate the presence of a STRN/ALK fusion. The STRN/ALK transcript consisted of the fusion between exon 3 of STRN and exon 20 of ALK. Subsequent screening of 75 various thyroid tumors by RT-PCR revealed that 2 out of 29 papillary thyroid carcinomas exhibited the same fusion transcript. None was detected in other types of malignant or benign thyroid lesions analyzed. These findings could pave the way for the development of new targeted therapeutic strategies in the treatment of papillary thyroid carcinomas and point to ALK inhibitors as promising agents that merit rapid evaluation.


Genes, Chromosomes and Cancer | 2008

Characterization of amplicons in neuroblastoma: high-resolution mapping using DNA microarrays, relationship with outcome, and identification of overexpressed genes.

Anne Fix; Carlo Lucchesi; Agnès Ribeiro; Delphine Lequin; Gaëlle Pierron; Gudrun Schleiermacher; Olivier Delattre; Isabelle Janoueix-Lerosey

Somatically acquired chromosomal imbalances are a key feature of neuroblastoma, a heterogeneous pediatric solid tumor. Among these alterations, genomic amplification targeting the MYCN oncogene and observed in about 25–30% of the cases, strongly correlates with advanced stage and poor outcome. In this work, we have used BAC and SNP arrays as well as gene expression arrays to characterize amplifications in neuroblastoma. Eighty‐eight distinct BACs defining high‐level amplification events were identified in 65 samples, including 43 tumors and 22 cell lines. Although the highest recurrence was observed on chromosome 2, clones on chromosomes 8, 12, 16, and 17 also revealed genomic amplification in several samples. A detailed analysis of the 2p22‐2p25 MYCN containing region indicated highly complex patterns in a number of cases. Coamplifications involving MYCN and other regions were explored by FISH in three cell lines. High‐resolution arrays then allowed us to further refine the mapping of 25 amplicons in 19 samples, either reducing the size of a single continuous amplicon or increasing the complexity by highlighting multiple noncontiguous regions of amplification. Combined analysis of gene expression profiling and array‐CGH data indicated that 12 to 25% of the genes that are targeted by genomic amplification are actually over‐expressed in tumor cells, several of them having already been implicated in cancer. Finally, our results suggest that the presence of amplicons localized outside of chromosome 2, in addition to MYCN amplification, may be linked to a particularly severe outcome in neuroblastoma patients.


Modern Pathology | 2013

YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations

Sabrina Croce; Isabelle Hostein; Agnès Ribeiro; Delphine Garbay; Valérie Velasco; E. Stoeckle; Frédéric Guyon; Anne Floquet; Agnès Neuville; Jean-Michel Coindre; Gaëtan MacGrogan; Frédéric Chibon

Endometrial stromal sarcomas represent the second most common mesenchymal uterine tumor. The 2003 WHO classification distinguishes low-grade and undifferentiated endometrial stromal sarcomas with different prognoses. Endometrial stromal sarcomas are a genetically heterogeneous group of sarcomas harboring different cytogenetic anomalies. Recently, a fusion between the YWHAE and FAM22A/B genes subsequent to a t(10;17) (q22;p13) has been described in endometrial sarcomas with high-grade histology. We examined YWHAE rearrangements by FISH break-apart and RT-PCR in a series of 27 undifferentiated uterine stromal sarcoma without JAZF1 rearrangements. Immunohistochemistry (IHC) was carried out with a panel of antibodies (estrogen (ER) and progesterone (PR) receptors, CD10, Cyclin D1, β-catenin, p53, and Ki-67). We identified a subgroup of endometrial sarcomas with high-grade histology and uniform morphology harboring YWHAE rearrangements. FISH break-apart was interpretable in 20 cases (74%). Twelve cases (60%) showed <10% of tumor cells with a YWHAE rearrangement, 4 cases (20%) showed between 10 and ≤20%, and 4 (20%) >20%. RT-PCR was tested on 24/27 cases (88%) and 19 cases were interpretable (79%). Five cases (26%) showed a specific fusion transcript YWHAE–FAM22A/B sequence. The best concordance rate between FISH and RT-PCR (94%) was obtained with the threshold of 20% of cells with a YWHAE rearrangement. The YWHAE-rearranged cases showed high-grade morphology with uniform appearance, spindle or round epithelioid cells, low ER and PR, CD10 expression, and a high and diffuse positivity for Cyclin D1, p53, and nuclear β-catenin negativity. Cyclin D1 was the most sensitive marker for high-grade endometrial sarcomas with YWHAE rearrangement. All undifferentiated uterine sarcomas with pleomorphic appearances did not harbor any YWHAE rearrangements, except for one case. Overall, for endometrial sarcoma cases with high-grade morphology we recommend to test for YWHAE rearrangements by FISH break-apart, a cost- and time-efficient method, and to complete the investigation by RT-PCR in borderline cases.


Oncogene | 2008

In neuroblastic tumours, Schwann cells do not harbour the genetic alterations of neuroblasts but may nevertheless share the same clonal origin

Franck Bourdeaut; Agnès Ribeiro; R Paris; G Pierron; Jérôme Couturier; Michel Peuchmaur; Olivier Delattre

Neuroblastic tumours are composed of variable proportions of neuroblasts and Schwann cells. Whether both components share a common neoplastic origin is highly debated and discrepant results have been reported about the presence of tumour-related genetic alterations in Schwann cells. We have used X-methylation analysis and array-CGH to investigate contiguous Schwannian and neuroblastic areas in tumours with a nodular pattern. A skewed X inactivation was observed in four out of five stromal components. Interestingly, in these four cases, the X-inactivation profiles of the neuroblastic components were identical to the matched stromal areas. However, whereas all neuroblastic areas displayed chromosomal imbalances, no alteration was found in any Schwann cell components. Similarly, no alteration was observed in a series of 19 tumours with a single stroma-rich component, which occasionally exhibited a skewed X-inactivation pattern (3/17 informative tumours). Altogether, this indicates that most stroma-rich tumours display a polyclonal proliferation and that Schwann cells do not derive from neuroblasts. However, in tumours with both stroma-rich and -poor components, our results suggest that cells from both areas share a common progenitor.


The Journal of Pathology | 2009

Cholinergic switch associated with morphological differentiation in neuroblastoma

Franck Bourdeaut; Isabelle Janoueix-Lerosey; Carlo Lucchesi; Régine Paris; Agnès Ribeiro; Loïc de Pontual; Jeanne Amiel; Stanislas Lyonnet; Gaëlle Pierron; Jean Michon; Michel Peuchmaur; Olivier Delattre

The morphology of malignant cells distinguishes between undifferentiated, poorly differentiated and differentiating neuroblastomas and constitutes a strong prognostic factor. Spontaneous or treatment‐induced maturation characterizes a subset of neuroblastomas. It constitutes the basis of retinoic acid treatment to improve survival in aggressive neuroblastomas. However, the molecular events that drive differentiation are poorly understood. In the present study we have investigated the relationships between gene expression profiles and differentiation criteria in stroma‐poor neuroblastomas. This study included three undifferentiated (UN), 20 poorly differentiated (PDN) and 11 differentiating (DN) neuroblastomas. These groups could be clearly separated using unsupervised clustering methods, which further enabled a major classification impact of genes involved in neural development, differentiation and function to be identified. UNs are characterized by high ASCL1, high PHOX2B, low GATA2, low TH and low DBH expressions. Most PDNs harbour a clear adrenergic phenotype, even in the presence of missense PHOX2B mutations. Finally, all DN tumours demonstrate cholinergic features. Depending upon their association with adrenergic characteristics, this enables dual ‘cholinergic/adrenergic’ and ‘fully cholinergic’ neuroblastomas to be defined. This suggests that the cholinergic switch, a final specification process that occurs physiologically in a minority of sympathetic neurons, is a critical step of differentiation in some neuroblastic tumours. This switch is associated with a down regulation of DBH that is apparently not strictly dependent upon PHOX2B. Conversely, GATA2 and TFAP2B may play critical roles in maintaining adrenergic features in poorly differentiated tumours. Copyright

Collaboration


Dive into the Agnès Ribeiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge