Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmad R. Kirmani is active.

Publication


Featured researches published by Ahmad R. Kirmani.


Nature Materials | 2014

Air-stable n-type colloidal quantum dot solids.

Zhijun Ning; Oleksandr Voznyy; Jun Pan; Sjoerd Hoogland; Valerio Adinolfi; Jixian Xu; Min Li; Ahmad R. Kirmani; Jon-Paul Sun; James C. Minor; Kyle W. Kemp; Haopeng Dong; Lisa R. Rollny; André J. Labelle; Graham H. Carey; Brandon R. Sutherland; Ian G. Hill; Aram Amassian; Huan Liu; Jiang Tang; Osman M. Bakr; Edward H. Sargent

Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.


Nature Materials | 2017

Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids

Mengxia Liu; Oleksandr Voznyy; Randy P. Sabatini; F. Pelayo García de Arquer; Rahim Munir; Ahmed H. Balawi; Xinzheng Lan; Fengjia Fan; Grant Walters; Ahmad R. Kirmani; Sjoerd Hoogland; Frédéric Laquai; Aram Amassian; Edward H. Sargent

Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.


ACS Nano | 2013

The donor-supply electrode enhances performance in colloidal quantum dot solar cells.

Pouya Maraghechi; André J. Labelle; Ahmad R. Kirmani; Xinzheng Lan; Michael M. Adachi; Susanna M. Thon; Sjoerd Hoogland; Anna Lee; Zhijun Ning; Armin Fischer; Aram Amassian; Edward H. Sargent

Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the suns broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.


Journal of Materials Chemistry | 2015

Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material

Khalid Mahmood; Bhabani S. Swain; Ahmad R. Kirmani; Aram Amassian

Until recently, only mesoporous TiO2 and ZnO were successfully demonstrated as electron transport layers (ETL) alongside the reports of ZrO2 and Al2O3 as scaffold materials in organometal halide perovskite solar cells, largely owing to ease of processing and to high power conversion efficiency. In this article, we explore tungsten trioxide (WO3)-based nanostructured and porous ETL materials directly grown hydrothermally with different morphologies such as nanoparticles, nanorods and nanosheet arrays. The nanostructure morphology strongly influences the photocurrent and efficiency in organometal halide perovskite solar cells. We find that the perovskite solar cells based on WO3 nanosheet arrays yield significantly enhanced photovoltaic performance as compared to nanoparticles and nanorod arrays due to good perovskite absorber infiltration in the porous scaffold and more rapid carrier transport. We further demonstrate that treating the WO3 nanostructures with an aqueous solution of TiCl4 reduces charge recombination at the perovskite/WO3 interface, resulting in the highest power conversion efficiency of 11.24% for devices based on WO3 nanosheet arrays. The successful demonstration of alternative ETL materials and nanostructures based on WO3 will open up new opportunities in the development of highly efficient perovskite solar cells.


Nature Communications | 2015

Solution-Printed Organic Semiconductor Blends Exhibiting Transport Properties on Par with Single Crystals

Muhammad R. Niazi; Ruipeng Li; Er Qiang Li; Ahmad R. Kirmani; Maged Abdelsamie; Qingxiao Wang; Wenyang Pan; Marcia M. Payne; John E. Anthony; Detlef-M. Smilgies; Sigurdur T. Thoroddsen; Emmanuel P. Giannelis; Aram Amassian

Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.


Advanced Materials | 2014

Effect of Solvent Environment on Colloidal-Quantum-Dot Solar-Cell Manufacturability and Performance

Ahmad R. Kirmani; Graham H. Carey; Maged Abdelsamie; Buyi Yan; Dongkyu Cha; Lisa R. Rollny; Xiaoyu Cui; Edward H. Sargent; Aram Amassian

The absorbing layer in state-of-the-art colloidal quantum-dot solar cells is fabricated using a tedious layer-by-layer process repeated ten times. It is now shown that methanol, a common exchange solvent, is the main culprit, as extended exposure leaches off the surface halide passivant, creating carrier trap states. Use of a high-dipole-moment aprotic solvent eliminates this problem and is shown to produce state-of-the-art devices in far fewer steps.


Advanced Materials | 2014

The Complete In-Gap Electronic Structure of Colloidal Quantum Dot Solids and Its Correlation with Electronic Transport and Photovoltaic Performance

Khabiboulakh Katsiev; Alexander H. Ip; Armin Fischer; Iori Tanabe; Xin Zhang; Ahmad R. Kirmani; Oleksandr Voznyy; Lisa R. Rollny; Kang Wei Chou; Susanna M. Thon; Graham H. Carey; Xiaoyu Cui; Aram Amassian; Peter A. Dowben; Edward H. Sargent; Osman M. Bakr

The direct observation of the complete electronic band structure of a family of PbS CQD solids via photoelectron spectroscopy is reported. We investigate how materials processing strategies, such as the latest passivation methods that produce record-performance photovoltaics, achieve their performance advances. Halide passivated films show a drastic reduction in states in the midgap, contributing to a marked improvement in the device performance.


Journal of Materials Chemistry | 2013

A scalable synthesis of highly stable and water dispersible Ag44(SR)30 nanoclusters

Lina G. AbdulHalim; Sumaira Ashraf; Khabiboulakh Katsiev; Ahmad R. Kirmani; Nuwan Kothalawala; Dalaver H. Anjum; Sikandar Abbas; Aram Amassian; Francesco Stellacci; Amala Dass; Irshad Hussain; Osman M. Bakr

We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30 ]m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4−, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR)30]4− by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster.


Science Advances | 2017

Programmable and coherent crystallization of semiconductors

Liyang Yu; Muhammad R. Niazi; Guy Olivier Ngongang Ndjawa; Ruipeng Li; Ahmad R. Kirmani; Rahim Munir; Ahmed H. Balawi; Frédéric Laquai; Aram Amassian

Programmable crystallization of thin films produces patterns and bespoke microstructures for semiconductor applications. The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors.


Nature Nanotechnology | 2018

2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids

Jixian Xu; Oleksandr Voznyy; Mengxia Liu; Ahmad R. Kirmani; Grant Walters; Rahim Munir; Maged Abdelsamie; Andrew H. Proppe; Amrita Sarkar; F. Pelayo García de Arquer; Mingyang Wei; Bin Sun; Min Liu; Olivier Ouellette; Rafael Quintero-Bermudez; Jie Li; James Z. Fan; Li Na Quan; Petar Todorović; Hairen Tan; Sjoerd Hoogland; Shana O. Kelley; Morgan Stefik; Aram Amassian; Edward H. Sargent

Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon3. Advances in surface passivation2,4–7, combined with advances in device structures8, have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 20169. Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to ~300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9–11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic–amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses (~600 nm) and record values of JSC (32 mA cm−2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.A new matrix engineering strategy enables improvements of CQD solar cell efficiency via considerable enhancement of the photocarrier diffusion length.

Collaboration


Dive into the Ahmad R. Kirmani's collaboration.

Top Co-Authors

Avatar

Aram Amassian

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osman M. Bakr

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khabiboulakh Katsiev

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Muhammad R. Niazi

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Omar F. Mohammed

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge