Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ahmed Abdelfattah is active.

Publication


Featured researches published by Ahmed Abdelfattah.


PLOS ONE | 2015

Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea)

Ahmed Abdelfattah; Maria Giulia Li Destri Nicosia; S. O. Cacciola; Samir Droby; Leonardo Schena

The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.


Phytopathology | 2016

Metabarcoding Analysis of Phytophthora Diversity Using Genus-Specific Primers and 454 Pyrosequencing

Maria Isabella Prigigallo; Ahmed Abdelfattah; S. O. Cacciola; Roberto Faedda; Simona Marianna Sanzani; D. E. L. Cooke; Leonardo Schena

A metabarcoding method based on genus-specific primers and 454 pyrosequencing was utilized to investigate the genetic diversity of Phytophthora spp. in soil and root samples of potted plants, from eight nurseries. Pyrosequencing enabled the detection of 25 Phytophthora phylotypes distributed in seven different clades and provided a much higher resolution than a corresponding cloning/Sanger sequencing approach. Eleven of these phylotypes, including P. cactorum, P. citricola s.str., P. palmivora, P. palmivora-like, P. megasperma or P. gonapodyides, P. ramorum, and five putative new Phytophthora species phylogenetically related to clades 1, 2, 4, 6, and 7 were detected only with the 454 pyrosequencing approach. We also found an additional 18 novel records of a phylotype in a particular nursery that were not detected with cloning/Sanger sequencing. Several aspects confirmed the reliability of the method: (i) many identical sequence types were identified independently in different nurseries, (ii) most sequence types identified with 454 pyrosequencing were identical to those from the cloning/Sanger sequencing approach and/or perfectly matched GenBank deposited sequences, and (iii) the divergence noted between sequence types of putative new Phytophthora species and all other detected sequences was sufficient to rule out sequencing errors. The proposed method represents a powerful tool to study Phytophthora diversity providing that particular attention is paid to the analysis of 454 pyrosequencing raw read sequences and to the identification of sequence types.


Horticulture research | 2016

Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase

Ahmed Abdelfattah; Michael Wisniewski; Samir Droby; Leonardo Schena

The fungal diversity in harvested apples from organic or conventional management practices was analyzed in different fruit locations (stem end, calyx end, peel, and wounded flesh) shortly after fruit purchase (T1) and after 2 weeks of storage (T5). A total of 5,760,162 high-quality fungal sequences were recovered and assigned to 8,504 Operational Taxonomic Units. Members of the phylum Ascomycota were dominant in all samples and accounted for 91.6% of the total number of detected sequences. This was followed by Basidiomycota (8%), Chytridiomycota (0.1%), and unidentified fungi (0.3%). Alpha and beta diversity analyses revealed the presence of significantly different fungal populations in the investigated fruit parts. Among detected fungi, the genus Penicillium prevailed in the peel and in the wounded flesh while Alternaria spp. prevailed in the calyx and stem end samples that included apple core tissues. Several taxonomic units that appear to be closely related to pathogenic fungi associated with secondary human infections were present in peel and wounds. Moreover, significantly different populations were revealed in organic and conventional apples and this result was consistent in all investigated fruit parts (calyx end, peel, stem end, and wounded flesh). Several unique taxa were exclusively detected in organic apples suggesting that management practices may have been a contributing factor in determining the taxa present. In contrast, little differences were revealed in the two assessment times (T1 and T5). Results of the present study represent an advancement of the current knowledge on the fungal microbiota in collected fruit tissues of apple.


PLOS ONE | 2016

Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs.

Ahmed Abdelfattah; Michael Wisniewski; Maria Giulia Li Destri Nicosia; S. O. Cacciola; Leonardo Schena

An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent.


PLOS ONE | 2017

On site DNA barcoding by nanopore sequencing

Michele Menegon; Chiara Cantaloni; Ana Rodríguez-Prieto; Cesare Centomo; Ahmed Abdelfattah; Marzia Rossato; Massimo Bernardi; Luciano Xumerle; Simon P. Loader; Massimo Delledonne

Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities.


Mbio | 2018

Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence

Jia Liu; Ahmed Abdelfattah; John L. Norelli; Erik Burchard; Leonardo Schena; Samir Droby; Michael Wisniewski

BackgroundHigh-throughput amplicon sequencing spanning conserved portions of microbial genomes (16s rRNA and ITS) was used in the present study to describe the endophytic microbiota associated with three apple varieties, “Royal Gala,” “Golden Delicious,” and “Honey Crisp,” and two rootstocks, M.9 and M.M.111. The objectives were to (1) determine if the microbiota differs in different rootstocks and apple varieties and (2) determine if specific rootstock-scion combinations influence the microbiota composition of either component.ResultsResults indicated that Ascomycota (47.8%), Zygomycota (31.1%), and Basidiomycota (11.6%) were the dominant fungal phyla across all samples. The majority of bacterial sequences were assigned to Proteobacteria (58.4%), Firmicutes (23.8%), Actinobacteria (7.7%), Bacteroidetes (2%), and Fusobacteria (0.4%). Rootstocks appeared to influence the microbiota of associated grafted scion, but the effect was not statistically significant. Pedigree also had an impact on the composition of the endophytic microbiota, where closely-related cultivars had a microbial community that was more similar to each other than it was to a scion cultivar that was more distantly-related by pedigree. The more vigorous rootstock (M.M.111) was observed to possess a greater number of growth-promoting bacterial taxa, relative to the dwarfing rootstock (M.9).ConclusionsThe mechanism by which an apple genotype, either rootstock or scion, has a determinant effect on the composition of a microbial community is not known. The similarity of the microbiota in samples with a similar pedigree suggests the possibility of some level of co-evolution or selection as proposed by the “holobiont” concept in which metaorganisms have co-evolved. Clearly, however, the present information is only suggestive, and a more comprehensive analysis is needed.


Phytopathology | 2017

Evaluation of a Pomegranate Peel Extract (PGE) as Alternative Mean to Control Olive Anthracnose

Sonia Pangallo; Maria Giulia Li Destri Nicosia; G. E. Agosteo; Ahmed Abdelfattah; Flora V. Romeo; S. O. Cacciola; Paolo Rapisarda; Leonardo Schena

Olive anthracnose is caused by different species of Colletotrichum spp. and may be regarded as the most damaging disease of olive fruit worldwide, greatly affecting quality and quantity of the productions. A pomegranate peel extract (PGE) proved very effective in controlling the disease. The extract had a strong in vitro fungicidal activity against Colletotrichum acutatum sensu stricto, was very effective in both preventive and curative trials with artificially inoculated fruit, and induced resistance in treated olive tissues. In field trials, PGE was significantly more effective than copper, which is traditionally used to control the disease. The highest level of protection was achieved by applying the extract in the early ascending phase of the disease outbreaks because natural rots were completely inhibited with PGE at 12 g/liter and were reduced by 98.6 and by 93.0% on plants treated with PGE at 6 and 3 g/liter, respectively. Two treatments carried out 30 and 15 days before the expected epidemic outbreak reduced the incidence of the disease by 77.6, 57.0, and 51.8%, depending on the PGE concentration. The analysis of epiphytic populations showed a strong antimicrobial activity of PGE, which sharply reduced both fungal and bacterial populations. Because PGE was obtained from a natural matrix using safe chemicals and did not have any apparent phytotoxic effect on treated olive fruit, it may be regarded as a safe and effective natural antifungal preparation to control olive anthracnose and improve olive productions.


Frontiers in Plant Science | 2017

Transcriptomic Response of Resistant (PI613981–Malus sieversii) and Susceptible (“Royal Gala”) Genotypes of Apple to Blue Mold (Penicillium expansum) Infection

Ana-Rosa Ballester; John L. Norelli; Erik Burchard; Ahmed Abdelfattah; Elena Levin; Luis González-Candelas; Samir Droby; Michael Wisniewski

Malus sieversii from Central Asia is a progenitor of the modern domesticated apple (Malus × domestica). Several accessions of M. sieversii are highly resistant to the postharvest pathogen Penicillium expansum. A previous study identified the qM–Pe3.1 QTL on LG3 for resistance to P. expansum in the mapping population GMAL4593, developed using the resistant accession, M. sieversii –PI613981, and the susceptible cultivar “Royal Gala” (RG) (M. domestica), as parents. The goal of the present study was to characterize the transcriptomic response of susceptible RG and resistant PI613981 apple fruit to wounding and inoculation with P. expansum using RNA–Seq. Transcriptomic analyses 0–48 h post inoculation suggest a higher basal level of resistance and a more rapid and intense defense response to wounding and wounding plus inoculation with P. expansum in M. sieversii –PI613981 than in RG. Functional analysis showed that ethylene–related genes and genes involved in “jasmonate” and “MYB–domain transcription factor family” were over–represented in the resistant genotype. It is suggested that the more rapid response in the resistant genotype (Malus sieversii–PI613981) plays a major role in the resistance response. At least twenty DEGs were mapped to the qM–Pe3.1 QTL (M × d v.1: 26,848,396–28,424,055) on LG3, and represent potential candidate genes responsible for the observed resistance QTL in M. sieversii–PI613981. RT–qPCR of several of these genes was used to validate the RNA–Seq data and to confirm their higher expression in MS0.


Archive | 2017

Qualitative and quantitative impacts of Bactrocera oleae on the fungal microbiota of ripe drupes

David Ruano Rosa; Ahmed Abdelfattah; M. G. Li Destri Nicosia; S. O. Cacciola; G. E. Agosteo; Leonardo Schena

Trabajo presentado en el 15th Congress of the Mediterranean Phytopathological Union, celebrado en cordoba (Espana) del 20 al 23 de junio de 2017.Comunicacion oral presentada en el 15th Congress of the Mediterranean Phytopathological Union, June 20–23, 2017, Cordoba, Spain.Early assessment of late wilt of maize (Harpophora maydis) and the control effect of Lycium europaeum extracts. C. RODRÍGUEZ-MALLOL1, R. TEJ1,2, L. MOLINERO-RUIZ1. 1Department of Crop Protection, Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n, 14004 Córdoba, Spain. 2Physiology and Biochemistry of Plant Response to Abiotic Stresses Unit, Faculty of Sciences of Tunis, University of Tunis El Manar, 1060 Tunis El Manar, Tunisia. E-mail: [email protected]


Extremophiles | 2017

Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism

Hao Hu; Michael Wisniewski; Ahmed Abdelfattah; Xiaodong Zheng

Cold-adapted biocontrol yeast was selected from four yeast isolates from Tibet against gray mold of cherry tomato in cold storage. The strain numbered LB2 showed the best biocontrol activity and identified as Cryptococcus laurentii. Competition for nutrient, space, and induced fruit resistance was also its antagonistic mechanism. Compared with C. laurentii from sea-level place, the reason why LB2 had a better biocontrol activity was studied. More trehalose and proline in cell of LB2 made it exhibit a better cellular activity at low temperature, such as higher population dynamics in the wounds of cherry tomato and more biocontrol-related enzyme secretion, chitinase and β-glucanase. The better oxidative stress tolerance was another characteristic of LB2. Maybe because of the ideal culture condition, there was no obvious difference between these two yeasts in the growth in vitro test at low temperature. Although the same phenomenon existed in the low pH stress test, LB2 still had higher cell concentration under this stress. Comparative transcriptomics method was also applied to analyze the cell activity of LB2 and C. laurentii at different temperatures. The results showed that more active response in the intracellular structure and intracellular metabolic process to cold temperature made LB2 had a better activity. The present study indicated a possibility to select cold-adapted biocontrol yeast from Tibet and also showed its primary action mechanism.

Collaboration


Dive into the Ahmed Abdelfattah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Wisniewski

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Erik Burchard

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

John L. Norelli

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana-Rosa Ballester

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis González-Candelas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge