Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akari Ishisaka is active.

Publication


Featured researches published by Akari Ishisaka.


Free Radical Biology and Medicine | 2011

Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats

Akari Ishisaka; Satomi Ichikawa; Hiroyuki Sakakibara; Mariusz K. Piskula; Toshiyuki Nakamura; Yoji Kato; Mikiko Ito; Ken-ichi Miyamoto; Akira Tsuji; Yoshichika Kawai; Junji Terao

Quercetin is widely distributed in vegetables and herbs and has been suggested to act as a neuroprotective agent. Here, we demonstrate that quercetin can accumulate enough to exert biological activity in rat brain tissues. Homogenates of perfused rat brain without detectable hemoglobin contaminants were treated with β-glucuronidase/sulfatase and the released quercetin and its methylated form were analyzed using high-performance liquid chromatography (HPLC) with three different detection methods. Both quercetin and the methylated form were detected in the brain of quercetin-administered rats using HPLC-UV and HPLC with electrochemical detection and were further identified using HPLC-tandem mass spectrometry. Oral administration of quercetin (50mg/kg body wt) attenuated the increased oxidative stress in the hippocampus and striatum of rats exposed to chronic forced swimming. The possible transport of quercetin derivatives into the brain tissue was reproduced in vitro by using a rat brain capillary endothelial cell line, a model of the blood-brain barrier. These results show that quercetin could be a potent nutrient that can access the brain and protect it from disorders associated with oxidative stress.


Nutrition | 2011

Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria.

Saki Yoshino; Aya Hara; Hiroyuki Sakakibara; Kyuichi Kawabata; Akira Tokumura; Akari Ishisaka; Yoshichika Kawai; Junji Terao

OBJECTIVE Quercetin is a flavonoid found in plant foods and herbal medicines. It possesses antidepressant-like effects in forced swimming test-loaded rodents. We wanted to clarify the mechanism of action of dietary quercetin for exerting antidepressant-like effects. The effect of quercetin and its antioxidative metabolite quercetin 3-glucuronide (Q3GA) on the activity of mouse brain mitochondrial monoamine oxidase-A (MAO-A) was evaluated by measuring the deamination product of serotonin, 5-hydroxyindole acetaldehyde (5-HIAL). METHODS An ultraviolet high-performance liquid chromatographic analysis was applied to measure the 5-HIAL generated by the reaction of MAO-A with serotonin. The inhibitory effect of quercetin and Q3GA on mitochondrial MAO-A activity was estimated by the content of 5-HIAL and hydrogen peroxide accompanied by the MAO-A reaction. RESULTS Quercetin (but not Q3GA) decreased the production of 5-HIAL by MAO-A activity. Q3GA inhibited the generation of hydrogen peroxide from the MAO-A reaction with serotonin. A periodic forced swimming test in mice increased brain mitochondrial MAO-A activity. Brain mitochondrial MAO-A activity was decreased in mice administered quercetin for 7 d, but its effect was much weaker than that of the selective MAO-A inhibitor clorgyline. CONCLUSION Quercetin is effective in the modulation of serotonergic activity by attenuating mitochondrial MAO-A activity in the brain. Its antioxidative metabolite Q3GA attenuates oxidative stress by interrupting the generation of hydrogen peroxide accompanying the MAO-A reaction.


PLOS ONE | 2013

Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages.

Akari Ishisaka; Kyuichi Kawabata; Satomi Miki; Yuko Shiba; Shoko Minekawa; Tomomi Nishikawa; Rie Mukai; Junji Terao; Yoshichika Kawai

Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that mitochondrial dysfunction plays a crucial role in the deconjugation of quercetin glucuronides in macrophages. Collectively, this study contributes to clarifying the mechanism responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites.


Archives of Biochemistry and Biophysics | 2014

Specific localization of quercetin-3-O-glucuronide in human brain.

Akari Ishisaka; Rie Mukai; Junji Terao; Noriyuki Shibata; Yoshichika Kawai

In recent years, many papers have suggested that dietary flavonoids may exert beneficial effects in the brain tissue for the protection of neurons against oxidative stress and inflammation. However, the bioavailability of flavonoids across the blood-brain barrier and the localization in the brain remain controversial. Thus, we examined the localization of quercetin-3-O-glucuronide (Q3GA), a major phase-II metabolite of quercetin, in the human brain tissues with or without cerebral infarction by immunohistochemical staining using anti-Q3GA antibody. A significant immunoreactivity was observed in the epithelial cells of the choroid plexus, which constitute the structural basis of the blood-cerebrospinal fluid (CSF) barrier, and in the foamy macrophages of recent infarcts. The cellular accumulation of Q3GA was also reproduced in vitro in macrophage-like RAW264, microglial MG6, and brain capillary endothelial RBEC1. It is of interest that a common feature of these cell lines is the deconjugation of Q3GA, resulting in the cellular accumulation of non-conjugated quercetin and the methylated forms. We then examined the anti-inflammatory activity of Q3GA and the deconjugated forms in the lipopolysaccharide-stimulated macrophage cells and revealed that the deconjugated forms (quercetin and a methylated form isorhamnetin), but not Q3GA itself, exhibited inhibitory effects on the inflammatory responses through attenuation of the c-Jun N-terminal kinase pathway. These results suggested that a quercetin glucuronide can pass through the blood-brain barrier, perhaps the CSF barrier, accumulate in specific types of cells, such as macrophages, and act as anti-inflammatory agents in the brain through deconjugation into the bioactive non-conjugated forms.


PLOS ONE | 2013

Non-Specific Protein Modifications by a Phytochemical Induce Heat Shock Response for Self-Defense

Kohta Ohnishi; Shinya Ohkura; Erina Nakahata; Akari Ishisaka; Yoshichika Kawai; Junji Terao; Taiki Mori; Takeshi Ishii; Tsutomu Nakayama; Noriyuki Kioka; Shinya Matsumoto; Yasutaka Ikeda; Minoru Akiyama; Kazuhiro Irie; Akira Murakami

Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.


British Journal of Nutrition | 2013

Blueberry intervention improves vascular reactivity and lowers blood pressure in high-fat-, high-cholesterol-fed rats.

Ana Rodriguez-Mateos; Akari Ishisaka; Kazuaki Mawatari; Alberto Vidal-Diez; Jeremy P. E. Spencer; Junji Terao

Growing evidence suggests that intake of flavonoid-containing foods may exert cardiovascular benefits in human subjects. We have investigated the effects of a 10-week blueberry (BB) supplementation on blood pressure (BP) and vascular reactivity in rats fed a high-fat/high-cholesterol diet, known to induce endothelial dysfunction. Rats were randomly assigned to follow a control chow diet, a chow diet supplemented with 2 % (w/w) BB, a high-fat diet (10 % lard; 0·5 % cholesterol) or the high fat plus BB for 10 weeks. Rats supplemented with BB showed significant reductions in systolic BP (SBP) of 11 and 14 %, at weeks 8 and 10, respectively, relative to rats fed the control chow diet (week 8 SBP: 107·5 (SEM 4·7) v. 122·2 (SEM 2·1) mmHg, P= 0·018; week 10 SBP: 115·0 (SEM 3·1) v. 132·7 (SEM 1·5) mmHg, P< 0·0001). Furthermore, SBP was reduced by 14 % in rats fed with the high fat plus 2 % BB diet at week 10, compared to those on the high-fat diet only (SBP: 118·2 (SEM 3·6) v. 139·5 (SEM 4·5) mmHg, P< 0·0001). Aortas harvested from BB-fed animals exhibited significantly reduced contractile responses (to L-phenylephrine) compared to those fed the control chow or high-fat diets. Furthermore, in rats fed with high fat supplemented with BB, aorta relaxation was significantly greater in response to acetylcholine compared to animals fed with the fat diet. These data suggest that BB consumption can lower BP and improve endothelial dysfunction induced by a high fat, high cholesterol containing diet.


Free Radical Research | 2012

Effect of quercetin and its glucuronide metabolite upon 6-hydorxydopamine-induced oxidative damage in Neuro-2a cells

Rie Mukai; Kyuichi Kawabata; Seiko Otsuka; Akari Ishisaka; Yoshichika Kawai; Zai-Si Ji; Hiroshi Tsuboi; Junji Terao

Abstract Quercetin is ubiquitously distributed in plant foods. This antioxidative polyphenol is mostly converted to conjugated metabolites in the body. Parkinson disease (PD) has been suggested to be related to oxidative stress derived from abnormal dopaminergic activity. We evaluated if dietary quercetin contributes to the antioxidant network in the central nervous system from the viewpoint of PD prevention. A neurotoxin, 6-hydroxydopamine (6-OHDA), was used as a model of PD. 6-OHDA-induced H2O2 production and cell death in mouse neuroblastoma, Neuro-2a. Quercetin aglycone suppressed 6-OHDA-induced H2O2 production and cell death, although aglycone itself reduced cell viability at higher concentration. Quercetin 3-O-β-d-glucuronide (Q3GA), which is an antioxidative metabolite of dietary quercetin, was little incorporated into the cell resulting in neither suppression of 6-OHDA-induced cell death nor reduction of cell viability. Q3GA was found to be deconjugated to quercetin by microglial MG-6 cells. These results indicate that quercetin metabolites should be converted to their aglycone to exert preventive effect on damage to neuronal cells.


Bioscience, Biotechnology, and Biochemistry | 2009

Different Profiles of Quercetin Metabolites in Rat Plasma: Comparison of Two Administration Methods

Yoshichika Kawai; Satomi Saito; Tomomi Nishikawa; Akari Ishisaka; Kaeko Murota; Junji Terao

The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments.


Journal of Agricultural and Food Chemistry | 2014

Plausible Authentication of Manuka Honey and Related Products by Measuring Leptosperin with Methyl Syringate

Yoji Kato; Rie Fujinaka; Akari Ishisaka; Yoko Nitta; Noritoshi Kitamoto; Yosuke Takimoto

Manuka honey, obtained from Leptospermum scoparium flowers in New Zealand, has strong antibacterial properties. In this study, plausible authentication of the manuka honey was inspected by measuring leptosperin, methyl syringate 4-O-β-D-gentiobiose, along with methyl syringate. Despite a gradual decrease in methyl syringate content over 30 days at 50 °C, even at moderate 37 °C, leptosperin remained stable. A considerable correlation between nonperoxide antibacterial activity and leptosperin content was observed in 20 certified manuka honey samples. Leptosperin and methyl syringate in manuka honey and related products were analyzed using HPLC connected with mass spectrometry. One noncertified brand displayed significant variations in the leptosperin and methyl syringate contents between two samples obtained from different regions. Therefore, certification is clearly required to protect consumers from disguised and/or low-quality honey. Because leptosperin is stable during storage and specific to manuka honey, its measurement may be applicable for manuka honey authentication.


Nutrition & Diabetes | 2016

Plasma concentrations of coffee polyphenols and plasma biomarkers of diabetes risk in healthy Japanese women

Andy H. Lee; L. Tan; Naoko Hiramatsu; Akari Ishisaka; Helman Alfonso; Akira Tanaka; N. Uemura; Y. Fujiwara; Ryu Takechi

Coffee consumption has been reported to reduce the risk of type 2 diabetes in experimental and epidemiological studies. This anti-diabetic effect of coffee may be attributed to its high content in polyphenols especially caffeic acid and chlorogenic acid. However, the association between plasma coffee polyphenols and diabetic risks has never been investigated in the literature. In this study, fasting plasma samples were collected from 57 generally healthy females aged 38–73 (mean 52, s.d. 8) years recruited in Himeji, Japan. The concentrations of plasma coffee polyphenols were determined by liquid chromatography coupled with mass tandem spectrometer. Diabetes biomarkers in the plasma/serum samples were analysed by a commercial diagnostic laboratory. Statistical associations were assessed using Spearman’s correlation coefficients. The results showed that plasma chlorogenic acid exhibited negative associations with fasting blood glucose, glycated hemoglobin and C-reactive protein, whereas plasma total coffee polyphenol and plasma caffeic acid were weakly associated with these biomarkers. Our preliminary data support previous findings that coffee polyphenols have anti-diabetic effects but further replications with large samples of both genders are recommended.

Collaboration


Dive into the Akari Ishisaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junji Terao

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyuichi Kawabata

Fukui Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rie Mukai

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Yoko Nitta

Okayama Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Akira Tanaka

Kagawa Nutrition University

View shared research outputs
Top Co-Authors

Avatar

Michitaka Naito

Sugiyama Jogakuen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge