Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiko Kondow is active.

Publication


Featured researches published by Akiko Kondow.


FEBS Letters | 2007

Ripply2 is essential for precise somite formation during mouse early development

Techuan Chan; Akiko Kondow; Akihiro Hosoya; Keisuke Hitachi; Akira Yukita; Koji Okabayashi; Hiroaki Nakamura; Hidehiro Ozawa; Hiroshi Kiyonari; Tatsuo Michiue; Yuzuru Ito; Makoto Asashima

The regions of expression of Ripply1 and Ripply2, presumptive transcriptional corepressors, overlap at the presomitic mesoderm during somitogenesis in mouse and zebrafish. Ripply1 is required for somite segmentation in zebrafish, but the developmental role of Ripply2 remains unclear in both species. Here, we generated Ripply2 knock‐out mice to investigate the role of Ripply2. Defects in segmentation of the axial skeleton were observed in the homozygous mutant mice. Moreover, somite segmentation and expression of Notch2 and Uncx4.1 were disrupted. These findings indicate that Ripply2 is involved in somite segmentation and establishment of rostrocaudal polarity.


Developmental Dynamics | 2009

In vitro organogenesis from undifferentiated cells in Xenopus

Makoto Asashima; Yuzuru Ito; Techuan Chan; Tatsuo Michiue; Mio Nakanishi; Kan Suzuki; Keisuke Hitachi; Koji Okabayashi; Akiko Kondow; Takashi Ariizumi

Amphibians have been used for over a century as experimental animals. In the field of developmental biology in particular, much knowledge has been accumulated from studies on amphibians, mainly because they are easy to observe and handle. Xenopus laevis is one of the most intensely investigated amphibians in developmental biology at the molecular level. Thus, Xenopus is highly suitable for studies on the mechanisms of organ differentiation from not only a single fertilized egg, as in normal development, but also from undifferentiated cells, as in the case of in vitro organogenesis. Based on the established in vitro organogenesis methods, we have identified many genes that are indispensable for normal development in various organs. These experimental systems are useful for investigations of embryonic development and for advancing regenerative medicine. Developmental Dynamics 238:1309–1320, 2009.


The International Journal of Developmental Biology | 2009

The Xenopus Bowline/Ripply family proteins negatively regulate the transcriptional activity of T-box transcription factors

Keisuke Hitachi; Hiroki Danno; Shunsuke Tazumi; Yuko Aihara; Hideho Uchiyama; Koji Okabayashi; Akiko Kondow; Makoto Asashima

Bowline, which is a member of the Xenopus Bowline/Ripply family of proteins, represses the transcription of somitogenesis-related genes before somite segmentation, which makes Bowline indispensable for somitogenesis. Although there are three bowline/Ripply family genes in each vertebrate species, it is not known whether the Bowline/Ripply family proteins share a common role in development. To elucidate their developmental roles, we examined the expression patterns and functions of the Xenopus Bowline/Ripply family proteins Bowline, Ledgerline, and a novel member of this protein family, xRipply3. We found that the expression patterns of bowline and ledgerline overlapped in the presomitic mesoderm (PSM), whereas ledgerline was additionally expressed in the newly formed somites. In addition, we isolated xRipply3, which is expressed in the pharyngeal region. Co-immunoprecipitation assays revealed that Ledgerline and xRipply3 interacted with T-box proteins and the transcriptional co-repressor Groucho/TLE. In luciferase assays, xRipply3 weakly suppressed the transcriptional activity of Tbx1, while Ledgerline strongly suppressed that of Tbx6. In line with the repressive role of Ledgerline, knockdown of Ledgerline resulted in enlargement of expression regions of the somitogenesis-related-genes mespb and Tbx6. Inhibition of histone deacetylase activity increased the expression of mespb, as seen in the Bowline and Ledgerline knockdown experiments. These results suggest that the Groucho-HDAC complex is required for the repressive activity of Bowline/Ripply family proteins during Xenopus somitogenesis. We conclude that although the Xenopus Bowline/Ripply family proteins Bowline, Ledgerline and xRipply3 are expressed differentially, they all act as negative regulators of T-box proteins.


Journal of Biological Chemistry | 2011

Taurine-containing Uridine Modifications in tRNA Anticodons Are Required to Decipher Non-universal Genetic Codes in Ascidian Mitochondria

Takeo Suzuki; Kenjyo Miyauchi; Tsutomu Suzuki; Shin-ichi Yokobori; Naoki Shigi; Akiko Kondow; Nono Takeuchi; Akihiko Yamagishi; Kimitsuna Watanabe

Variations in the genetic code are found frequently in mitochondrial decoding systems. Four non-universal genetic codes are employed in ascidian mitochondria: AUA for Met, UGA for Trp, and AGA/AGG(AGR) for Gly. To clarify the decoding mechanism for the non-universal genetic codes, we isolated and analyzed mitochondrial tRNAs for Trp, Met, and Gly from an ascidian, Halocynthia roretzi. Mass spectrometric analysis identified 5-taurinomethyluridine (τm5U) at the anticodon wobble positions of tRNAMet(AUR), tRNATrp(UGR), and tRNAGly(AGR), suggesting that τm5U plays a critical role in the accurate deciphering of all four non-universal codes by preventing the misreading of pyrimidine-ending near-cognate codons (NNY) in their respective family boxes. Acquisition of the wobble modification appears to be a prerequisite for the genetic code alteration.


Mechanisms of Development | 2005

Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.

Takanori Abe; Miho Furue; Akiko Kondow; Koichi Matsuzaki; Makoto Asashima

Loss of mesodermal competence (LMC) during Xenopus development is a well known but little understood phenomenon that prospective ectodermal cells (animal caps) lose their competence for inductive signals, such as activin A, to induce mesodermal genes and tissues after the start of gastrulation. Notch signaling can delay the onset of LMC for activin A in animal caps [Coffman, C.R., Skoglund, P., Harris, W.A., Kintner, C.R., 1993. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659-671], although the mechanism by which this modulation occurs remains unknown. Here, we show that Notch signaling also delays the onset of LMC in whole embryos, as it did in animal caps. To better understand this effect and the mechanism of LMC itself, we investigated at which step of activin signal transduction pathway the Notch signaling act to affect the timing of the LMC. In our system, ALK4 (activin type I receptor) maintained the ability to phosphorylate the C-terminal region of smad2 upon activin A stimulus after the onset of LMC in both control- and Notch-activated animal caps. However, C-terminal-phosphorylated smad2 could bind to smad4 and accumulate in the nucleus only in Notch-activated animal caps. We conclude that LMC was induced because C-terminal-phosphorylated smad2 lost its ability to bind to smad4, and consequently could not accumulate in the nucleus. Notch signal activation restored the ability of C-terminal-phosphorylated smad2 to bind to smad4, resulting in a delay in the onset of LMC.


Nucleosides, Nucleotides & Nucleic Acids | 1998

ASCIDIAN MITOCHONDRIAL TRNAMET POSSESSING UNIQUE STRUCTURAL CHARACTERISTICS

Akiko Kondow; Shin-ichi Yokobori; Takuya Ueda; Kimitsuna Watanabe

Methionine tRNA was purified from muscle mitochondria of the ascidian Halocynthia roretzi and its RNA sequence was determined. Analysis of the nucleotide sequence revealed that unlike most metazoan mitochondrial tRNAs(Met), which have a highly conserved cytidine (C) or C-derivative at the wobble position, the H. roretzi mitochondrial tRNA(Met) possesses 5-carboxymethylaminomethyluridine (cmnm5U) at the first position of the anticodon. This is the first report of a single mitochondrial tRNA(Met) species having uridine (U) or a U-derivative at the wobble position.


Biochemical and Biophysical Research Communications | 2008

Physical interaction between Tbx6 and mespb is indispensable for the activation of bowline expression during Xenopus somitogenesis.

Keisuke Hitachi; Hiroki Danno; Akiko Kondow; Kiyoshi Ohnuma; Hideho Uchiyama; Shoichi Ishiura; Akira Kurisaki; Makoto Asashima

During vertebrate somitogenesis, various transcriptional factors function coordinately to determine the position of the somite boundary. Previously, we reported on the signaling crosstalk that occurs between two major transcription factors involved in somitogenesis, Tbx6 and mespb/mesp2. These factors synergistically activated the expression of a downstream gene, bowline/Ripply2, which is essential for precise formation of the somite boundary. However, the molecular mechanism underlying this synergistic effect remains unclear. In this report, we found that the Tbx6 and mespb proteins interacted physically with each other. Pulldown assays with various deletion mutants of these proteins identified the essential domains for this physical interaction. Finally, we found that interference with the physical interaction by a dominant-negative form of mespb, mespbDeltaDBD, abrogated the expression of the bowline gene during Xenopus somitogenesis. These results indicate that the appropriate expression of bowline/Ripply2 is regulated by a direct interaction between the Tbx6 and mespb proteins during Xenopus somitogenesis.


Integrative Zoology | 2009

Molecular analyses of Xenopus laevis Mesp-related genes.

Keisuke Hitachi; Akiko Kondow; Hiroki Danno; Yusuke Nishimura; Koji Okabayashi; Makoto Asashima

During vertebrate somitogenesis, somites bud off from the anterior end of the presomitic mesoderm (PSM). Mesodermal posterior (Mesp)-related genes play essential roles in somitogenesis, particularly in the definition of the somite boundary position. Among vertebrates, two types of Mesp-related genes have been identified: Mesp1 and Mesp2 in the mouse; Meso-1 and Meso-2 in the chicken; Xl-mespa and Xl-mespb (also known as Thylacine1) in the African clawed frog (Xenopus laevis); and mesp-a and mesp-b in the zebrafish. However, the functional differences between two Mesp-related genes remain unknown. In the present study, we carried out comparative analyses of the Xl-mespa and Xl-mespb genes. The amino acid sequences of the Xl-mespa and Xl-mespb proteins showed a high level of similarity. The expression of Xl-mespa started broadly in the ventrolateral mesoderm and gradually shifted to a striped pattern of expression. In contrast, Xl-mespb showed a striped pattern of expression from the start. These expression profiles completely overlapped at the PSM during somitogenesis. To investigate the functional differences between Xl-mespa and Xl-mespb in terms of target gene regulation, we carried out a luciferase assay using the murine Lunatic fringe (L-fng) promoter. Transcription of the L-fng promoter was activated more strongly by Xl-mespb than by Xl-mespa. This same pattern was observed for the murine Mesp-related proteins. These results suggest that the functional differences between the two types of Mesp-related genes are evolutionally conserved in vertebrates.


PLOS ONE | 2018

Random migration of induced pluripotent stem cell-derived human gastrulation-stage mesendoderm

Yuta Yamamoto; Shota Miyazaki; Kenshiro Maruyama; Ryo Kobayashi; Minh Nguyen Tuyet Le; Ayumu Kano; Akiko Kondow; Shuji Fujii; Kiyoshi Ohnuma

Gastrulation is the initial systematic deformation of the embryo to form germ layers, which is characterized by the placement of appropriate cells in their destined locations. Thus, gastrulation, which occurs at the beginning of the second month of pregnancy, is a critical stage in human body formation. Although histological analyses indicate that human gastrulation is similar to that of other amniotes (birds and mammals), much of human gastrulation dynamics remain unresolved due to ethical and technical limitations. We used human induced pluripotent stem cells (hiPSCs) to study the migration of mesendodermal cells through the primitive streak to form discoidal germ layers during gastrulation. Immunostaining results showed that hiPSCs differentiated into mesendodermal cells and that epithelial–mesenchymal transition occurred through the activation of the Activin/Nodal and Wnt/beta-catenin pathways. Single-cell time-lapse imaging of cells adhered to cover glass showed that mesendodermal differentiation resulted in the dissociation of cells and an increase in their migration speed, thus confirming the occurrence of epithelial–mesenchymal transition. These results suggest that mesendodermal cells derived from hiPSCs may be used as a model system for studying migration during human gastrulation in vitro. Using random walk analysis, we found that random migration occurred for both undifferentiated hiPSCs and differentiated mesendodermal cells. Two-dimensional random walk simulation showed that homogeneous dissociation of particles may form a discoidal layer, suggesting that random migration might be suitable to effectively disperse cells homogeneously from the primitive streak to form discoidal germ layers during human gastrulation.


Genetics | 1999

Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochordata).

Shin-ichi Yokobori; Takuya Ueda; Gertraud Feldmaier-Fuchs; Svante Pääbo; Rei Ueshima; Akiko Kondow; Kazuya Nishikawa; Kimitsuna Watanabe

Collaboration


Dive into the Akiko Kondow's collaboration.

Top Co-Authors

Avatar

Makoto Asashima

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-ichi Yokobori

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge