Akira Hori
Takeda Pharmaceutical Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Akira Hori.
Nature | 2001
Tetsuya Ohtaki; Yasushi Shintani; Susumu Honda; Hirokazu Matsumoto; Akira Hori; Kimiko Kanehashi; Yasuko Terao; Satoshi Kumano; Yoshihiro Takatsu; Yasushi Masuda; Yoshihiro Ishibashi; Takuya Watanabe; Mari Asada; Takao Yamada; Masato Suenaga; Chieko Kitada; Satoshi Usuki; Tsutomu Kurokawa; Haruo Onda; Osamu Nishimura; Masahiko Fujino
Metastasis is a major cause of death in cancer patients and involves a multistep process including detachment of cancer cells from a primary cancer, invasion of surrounding tissue, spread through circulation, re-invasion and proliferation in distant organs. KiSS-1 is a human metastasis suppressor gene, that suppresses metastases of human melanomas and breast carcinomas without affecting tumorigenicity. However, its gene product and functional mechanisms have not been elucidated. Here we show that KiSS-1 (refs 1, 4) encodes a carboxy-terminally amidated peptide with 54 amino-acid residues, which we have isolated from human placenta as the endogenous ligand of an orphan G-protein-coupled receptor (hOT7T175) and have named ‘metastin’. Metastin inhibits chemotaxis and invasion of hOT7T175-transfected CHO cells in vitro and attenuates pulmonary metastasis of hOT7T175-transfected B16-BL6 melanomas in vivo. The results suggest possible mechanisms of action for KiSS-1 and a potential new therapeutic approach.
FEBS Letters | 2003
Hirokazu Tamamura; Akira Hori; Naoyuki Kanzaki; Kenichi Hiramatsu; Makiko Mizumoto; Hideki Nakashima; Naoki Yamamoto; Akira Otaka; Nobutaka Fujii
A chemokine receptor, CXCR4, and its endogenous ligand, stromal cell‐derived factor‐1 (SDF‐1), have been recognized to be involved in the metastasis of several types of cancers. T140 analogs are peptidic CXCR4 antagonists composed of 14 amino acid residues that were previously developed as anti‐HIV agents having inhibitory activity against HIV‐entry through its co‐receptor, CXCR4. Herein, we report that these compounds effectively inhibited SDF‐1‐induced migration of human breast cancer cells (MDA‐MB‐231), human leukemia T cells (Sup‐T1) and human umbilical vein endothelial cells at concentrations of 10–100 nM in vitro. Furthermore, slow release administration by subcutaneous injection using an Alzet osmotic pump of a potent and bio‐stable T140 analog, 4F‐benzoyl‐TN14003, gave a partial, but statistically significant (P≤0.05 (t‐test)) reduction in pulmonary metastasis of MDA‐MB‐231 in SCID mice, even though no attempt was made to inhibit other important targets such as CCR7. These results suggest that T140 analogs have potential use for cancer therapy, and that small molecular CXCR4 antagonists could potentially replace neutralizing antibodies as anti‐metastatic agents for breast cancer.
Bioorganic & Medicinal Chemistry | 2010
Yuya Oguro; Naoki Miyamoto; Kengo Okada; Terufumi Takagi; Hidehisa Iwata; Yoshiko Awazu; Hiroshi Miki; Akira Hori; Keiji Kamiyama; Shinichi Imamura
We synthesized a series of pyrrolo[3,2-d]pyrimidine derivatives and evaluated their application as type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase. Incorporation of a diphenylurea moiety at the C4-position of the pyrrolo[3,2-d]pyrimidine core via an oxygen linker resulted in compounds that were potent inhibitors of VEGFR2 kinase. Of these derivatives, compound 20d showed the strongest inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells (HUVEC). The co-crystal structure of 20d and VEGFR2 revealed that 20d binds to the inactive form of VEGFR2. Further studies indicated that 20d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited PDGFR and Tie-2 kinases. Oral administration of the hydrochloride salt of 20d at 3mg/kg/day showed potent inhibition of tumor growth in a DU145 human prostate cancer cell xenograft nude mouse model.
Molecular Cancer | 2013
Tsutomu Oshima; Shuji Sato; Junichi Kato; Yuki Ito; Takahiro Watanabe; Isamu Tsuji; Akira Hori; Tomofumi Kurokawa; Toshio Kokubo
BackgroundNectin-2 is a Ca2+-independent cell-cell adhesion molecule that is one of the plasma membrane components of adherens junctions. However, little has been reported about the involvement of Nectin-2 in cancer.MethodsTo determine the expression of Nectin-2 in cancer tissues and cancer cell lines, we performed gene expression profile analysis, immunohistochemistry studies, and flow cytometry analysis. We also investigated the potential of this molecule as a target for antibody therapeutics to treat cancers by generating and characterizing an anti-Nectin-2 rabbit polyclonal antibody (poAb) and 256 fully human anti-Nectin-2 monoclonal antibodies (mAbs). In addition, we tested anti-Nectin-2 mAbs in several in vivo tumor growth inhibition models to investigate the primary mechanisms of action of the mAbs.ResultsIn the present study, we found that Nectin-2 was over-expressed in clinical breast and ovarian cancer tissues by using gene expression profile analysis and immunohistochemistry studies. Nectin-2 was over-expressed in various cancer cell lines as well. Furthermore, the polyclonal antibody specific to Nectin-2 suppressed the in vitro proliferation of OV-90 ovarian cancer cells, which express endogenous Nectin-2 on the cell surface. The anti-Nectin-2 mAbs we generated were classified into 7 epitope bins. The anti-Nectin-2 mAbs demonstrated antibody-dependent cellular cytotoxicity (ADCC) and epitope bin-dependent features such as the inhibition of Nectin-2-Nectin-2 interaction, Nectin-2-Nectin-3 interaction, and in vitro cancer cell proliferation. A representative anti-Nectin-2 mAb in epitope bin VII, Y-443, showed anti-tumor effects against OV-90 cells and MDA-MB-231 breast cancer cells in mouse therapeutic models, and its main mechanism of action appeared to be ADCC.ConclusionsWe observed the over-expression of Nectin-2 in breast and ovarian cancers and anti-tumor activity of anti-Nectin-2 mAbs via strong ADCC. These findings suggest that Nectin-2 is a potential target for antibody therapy against breast and ovarian cancers.
Bioorganic & Medicinal Chemistry | 2013
Naoki Miyamoto; Nozomu Sakai; Takaharu Hirayama; Kazuhiro Miwa; Yuya Oguro; Hideyuki Oki; Kengo Okada; Terufumi Takagi; Hidehisa Iwata; Yoshiko Awazu; Seiji Yamasaki; Toshiyuki Takeuchi; Hiroshi Miki; Akira Hori; Shinichi Imamura
Vascular endothelial growth factor (VEGF) plays important roles in tumor angiogenesis, and the inhibition of its signaling pathway is considered an effective therapeutic option for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of 2-acylamino-6-phenoxy-imidazo[1,2-b]pyridazine derivatives. Hybridization of two distinct imidazo[1,2-b]pyridazines 1 and 2, followed by optimization led to the discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (23a, TAK-593) as a highly potent VEGF receptor 2 kinase inhibitor with an IC50 value of 0.95 nM. The compound 23a strongly suppressed proliferation of VEGF-stimulated human umbilical vein endothelial cells with an IC50 of 0.30 nM. Kinase selectivity profiling revealed that 23a inhibited platelet-derived growth factor receptor kinases as well as VEGF receptor kinases. Oral administration of 23a at 1 mg/kg bid potently inhibited tumor growth in a mouse xenograft model using human lung adenocarcinoma A549 cells (T/C=8%).
Biochemistry | 2011
Hidehisa Iwata; Shinichi Imamura; Akira Hori; Mark S. Hixon; Hiroyuki Kimura; Hiroshi Miki
Inhibition of tumor angiogenesis leads to a lack of oxygen and nutrients in the tumor and therefore has become a standards of care for many solid tumor therapies. Dual inhibition of vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) protein kinase activities is a popular strategy for targeting tumor angiogenesis. We discovered that TAK-593, a novel imidazo[1,2-b]pyridazine derivative, potently inhibits tyrosine kinases from the VEGFR and PDGFR families. TAK-593 was highly selective for these families, with an IC(50) >1 μM when tested against more than 200 protein and lipid kinases. TAK-593 displayed competitive inhibition versus ATP. In addition, TAK-593 inhibited VEGFR2 and PDGFRβ in a time-dependent manner, classifying it as a type II kinase inhibitor. Analysis of enzyme-inhibitor preincubation experiments revealed that the binding of TAK-593 to VEGFR2 and PDGFRβ occurs via a two-step slow binding mechanism. Dissociation of TAK-593 from VEGFR2 was extremely slow (t(1/2) >17 h), and the affinity of TAK-593 at equilibrium (K(i)*) was less than 25 pM. Ligand displacement analysis with a fluorescent tracer confirmed the slow dissociation of TAK-593. The dissociation rate constants were in good agreement between the activity and ligand displacement data, and both analyses supported slow dissociation of TAK-593. The long residence time of TAK-593 may achieve an extended pharmacodynamic effect on VEGFR2 and PDGFRβ kinases in vivo that differs substantially from its observed pharmacokinetic profile.
Bioorganic & Medicinal Chemistry Letters | 2013
Naoki Tomita; Yoko Hayashi; Shinkichi Suzuki; Yoshimasa Oomori; Yoshio Aramaki; Yoshihiro Matsushita; Misa Iwatani; Hidehisa Iwata; Atsutoshi Okabe; Yoshiko Awazu; Osamu Isono; Robert J. Skene; David J. Hosfield; Hiroshi Miki; Tomohiro Kawamoto; Akira Hori; Atsuo Baba
In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural analysis of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1 with FAK, we designed and prepared 1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin derivatives which selectively inhibited kinase activity of FAK without affecting seven other kinases. The optimized compound, N-(4-tert-butylbenzyl)-1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin-8-amine 4,4-dioxide 30 possessed significant FAK kinase inhibitory activities both in cell-free (IC50=0.64μM) and in cellular assays (IC50=7.1μM). These results clearly demonstrated a potential of FAK allosteric inhibitors as antitumor agents.
Cancer Letters | 2002
Akira Hori; Yasuhiro Imaeda; Keiji Kubo; Masami Kusaka
We discovered a novel benzimidazole derivative, named compound (comp.) 1, with unique antiangiogenic characteristics. Comp.1 cytostatically inhibited the vascular endothelial growth factor- and basic fibroblast growth factor-induced growth of endothelial cells (50% inhibitory concentration: 29-79 nM) without a cytotoxic phase, but did not affect the growth of other types of cells up to 90 microM. Comp.1 also inhibited the tube formation derived from a rat aorta fragment, but the oral (p.o.) treatment of comp.1 (46 mg/kg, administered twice daily (b.i.d.)) did not inhibit aniogenesis in a mouse sponge model. Comp.8, an analogue of comp.1, showed a specific inhibitory effect on endothelial cell growth. Comp.8 also suppressed angiogenesis (15 mg/kg, b.i.d., p.o., 70% inhibition) in the sponge model without body weight loss.
Bioorganic & Medicinal Chemistry | 2013
Yuya Oguro; Douglas R. Cary; Naoki Miyamoto; Michiko Tawada; Hidehisa Iwata; Hiroshi Miki; Akira Hori; Shinichi Imamura
For the purpose of discovering novel type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase, we designed and synthesized 5,6-fused heterocyclic compounds bearing a anilide group. A co-crystal structure analysis of imidazo[1,2-b]pyridazine derivative 2 with VEGFR2 revealed that the N1-nitrogen of imidazo[1,2-b]pyridazine core interacts with the backbone NH group of Cys919. To retain this essential interaction, we designed a series of imidazo[1,2-a]pyridine, [1,2,4]triazolo[1,5-a]pyridine, thiazolo[5,4-b]pyridine, and 1,3-benzothiazole derivatives maintaining a ring nitrogen as hydrogen bond acceptor (HBA) at the corresponding position. All compounds thus designed displayed strong inhibitory activity against VEGFR2 kinase, and the [1,2,4]triazolo[1,5-a]pyridine 13d displayed favorable physicochemical properties. Furthermore, 13d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited platelet-derived growth factor receptor (PDGFR) kinases. Oral administration of 13d showed potent anti-tumor efficacy in DU145 and A549 xenograft models in nude mice.
Bioorganic & Medicinal Chemistry | 2011
Hidehisa Iwata; Shinichi Imamura; Akira Hori; Mark S. Hixon; Hiroyuki Kimura; Hiroshi Miki
A pyrrolo[3,2-d]pyrimidine-based type-II vascular endothelial growth factor receptor 2 (VEGFR2) kinase inhibitor, compound 20d, displayed time-dependent inhibition of the non-phosphorylated catalytic domain of VEGFR2. In contrast, 20d did not show time-dependent inhibition of the phosphorylated enzyme. Dissociation of 20d from non-phosphorylated VEGFR2 was slow and the half-life of the complex was longer than 4h. In contrast, dissociation of 20d from the phosphorylated enzyme was very fast (half-life <5min). A fluorescent tracer based displacement assay and surface plasmon resonance (SPR) analysis confirmed the slow dissociation of 20d from only non-phosphorylated VEGFR2. Thus, activity based and binding kinetic analyses both supported slow dissociation of 20d from only non-phosphorylated VEGFR2. Additionally SPR analysis revealed that association rates were rapid and nearly identical for these two phosphorylation forms of VEGFR2. From these results, the preferential effect of 20d on non-phosphorylated VEGFR2 is dominated by its slow dissociation from the enzyme and this characteristically long residence time may increase its potency in vivo. The present findings may assist in the design of novel type-II kinase inhibitors.