Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidehisa Iwata is active.

Publication


Featured researches published by Hidehisa Iwata.


Bioorganic & Medicinal Chemistry | 2010

Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo[3,2-d]pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation.

Yuya Oguro; Naoki Miyamoto; Kengo Okada; Terufumi Takagi; Hidehisa Iwata; Yoshiko Awazu; Hiroshi Miki; Akira Hori; Keiji Kamiyama; Shinichi Imamura

We synthesized a series of pyrrolo[3,2-d]pyrimidine derivatives and evaluated their application as type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase. Incorporation of a diphenylurea moiety at the C4-position of the pyrrolo[3,2-d]pyrimidine core via an oxygen linker resulted in compounds that were potent inhibitors of VEGFR2 kinase. Of these derivatives, compound 20d showed the strongest inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells (HUVEC). The co-crystal structure of 20d and VEGFR2 revealed that 20d binds to the inactive form of VEGFR2. Further studies indicated that 20d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited PDGFR and Tie-2 kinases. Oral administration of the hydrochloride salt of 20d at 3mg/kg/day showed potent inhibition of tumor growth in a DU145 human prostate cancer cell xenograft nude mouse model.


Bioorganic & Medicinal Chemistry | 2013

Discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor

Naoki Miyamoto; Nozomu Sakai; Takaharu Hirayama; Kazuhiro Miwa; Yuya Oguro; Hideyuki Oki; Kengo Okada; Terufumi Takagi; Hidehisa Iwata; Yoshiko Awazu; Seiji Yamasaki; Toshiyuki Takeuchi; Hiroshi Miki; Akira Hori; Shinichi Imamura

Vascular endothelial growth factor (VEGF) plays important roles in tumor angiogenesis, and the inhibition of its signaling pathway is considered an effective therapeutic option for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of 2-acylamino-6-phenoxy-imidazo[1,2-b]pyridazine derivatives. Hybridization of two distinct imidazo[1,2-b]pyridazines 1 and 2, followed by optimization led to the discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (23a, TAK-593) as a highly potent VEGF receptor 2 kinase inhibitor with an IC50 value of 0.95 nM. The compound 23a strongly suppressed proliferation of VEGF-stimulated human umbilical vein endothelial cells with an IC50 of 0.30 nM. Kinase selectivity profiling revealed that 23a inhibited platelet-derived growth factor receptor kinases as well as VEGF receptor kinases. Oral administration of 23a at 1 mg/kg bid potently inhibited tumor growth in a mouse xenograft model using human lung adenocarcinoma A549 cells (T/C=8%).


Biochemistry | 2011

Biochemical Characterization of TAK-593, a Novel VEGFR/PDGFR Inhibitor with a Two-Step Slow Binding Mechanism

Hidehisa Iwata; Shinichi Imamura; Akira Hori; Mark S. Hixon; Hiroyuki Kimura; Hiroshi Miki

Inhibition of tumor angiogenesis leads to a lack of oxygen and nutrients in the tumor and therefore has become a standards of care for many solid tumor therapies. Dual inhibition of vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) protein kinase activities is a popular strategy for targeting tumor angiogenesis. We discovered that TAK-593, a novel imidazo[1,2-b]pyridazine derivative, potently inhibits tyrosine kinases from the VEGFR and PDGFR families. TAK-593 was highly selective for these families, with an IC(50) >1 μM when tested against more than 200 protein and lipid kinases. TAK-593 displayed competitive inhibition versus ATP. In addition, TAK-593 inhibited VEGFR2 and PDGFRβ in a time-dependent manner, classifying it as a type II kinase inhibitor. Analysis of enzyme-inhibitor preincubation experiments revealed that the binding of TAK-593 to VEGFR2 and PDGFRβ occurs via a two-step slow binding mechanism. Dissociation of TAK-593 from VEGFR2 was extremely slow (t(1/2) >17 h), and the affinity of TAK-593 at equilibrium (K(i)*) was less than 25 pM. Ligand displacement analysis with a fluorescent tracer confirmed the slow dissociation of TAK-593. The dissociation rate constants were in good agreement between the activity and ligand displacement data, and both analyses supported slow dissociation of TAK-593. The long residence time of TAK-593 may achieve an extended pharmacodynamic effect on VEGFR2 and PDGFRβ kinases in vivo that differs substantially from its observed pharmacokinetic profile.


ACS Medicinal Chemistry Letters | 2013

Structure-Based Approach for the Discovery of Pyrrolo[3,2-d]pyrimidine-Based EGFR T790M/L858R Mutant Inhibitors

Satoshi Sogabe; Youichi Kawakita; Shigeru Igaki; Hidehisa Iwata; Hiroshi Miki; Douglas R. Cary; Terufumi Takagi; Shinji Takagi; Yoshikazu Ohta; Tomoyasu Ishikawa

The epidermal growth factor receptor (EGFR) family plays a critical role in vital cellular processes and in various cancers. Known EGFR inhibitors exhibit distinct antitumor responses against the various EGFR mutants associated with nonsmall-cell lung cancer. The L858R mutation enhances clinical sensitivity to gefitinib and erlotinib as compared with wild type and reduces the relative sensitivity to lapatinib. In contrast, the T790M mutation confers drug resistance to gefitinib and erlotinib. We determined crystal structures of the wild-type and T790M/L858R double mutant EGFR kinases with reversible and irreversible pyrrolo[3,2-d]pyrimidine inhibitors based on analogues of TAK-285 and neratinib. In these structures, M790 adopts distinct conformations to accommodate different inhibitors, whereas R858 allows conformational variations of the activation loop. These results provide structural insights for understanding the structure-activity relationships that should contribute to the development of potent inhibitors against drug-sensitive or -resistant EGFR mutations.


Bioorganic & Medicinal Chemistry Letters | 2013

Structure-based discovery of cellular-active allosteric inhibitors of FAK.

Naoki Tomita; Yoko Hayashi; Shinkichi Suzuki; Yoshimasa Oomori; Yoshio Aramaki; Yoshihiro Matsushita; Misa Iwatani; Hidehisa Iwata; Atsutoshi Okabe; Yoshiko Awazu; Osamu Isono; Robert J. Skene; David J. Hosfield; Hiroshi Miki; Tomohiro Kawamoto; Akira Hori; Atsuo Baba

In order to develop potent and selective focal adhesion kinase (FAK) inhibitors, synthetic studies on pyrazolo[4,3-c][2,1]benzothiazines targeted for the FAK allosteric site were carried out. Based on the X-ray structural analysis of the co-crystal of the lead compound, 8-(4-ethylphenyl)-5-methyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazine 4,4-dioxide 1 with FAK, we designed and prepared 1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin derivatives which selectively inhibited kinase activity of FAK without affecting seven other kinases. The optimized compound, N-(4-tert-butylbenzyl)-1,5-dimethyl-1,5-dihydropyrazolo[4,3-c][2,1]benzothiazin-8-amine 4,4-dioxide 30 possessed significant FAK kinase inhibitory activities both in cell-free (IC50=0.64μM) and in cellular assays (IC50=7.1μM). These results clearly demonstrated a potential of FAK allosteric inhibitors as antitumor agents.


Bioorganic & Medicinal Chemistry | 2013

Design and synthesis of novel pyrimido[4,5-b]azepine derivatives as HER2/EGFR dual inhibitors

Youichi Kawakita; Masaki Seto; Tomohiro Ohashi; Toshiya Tamura; Tadashi Yusa; Hiroshi Miki; Hidehisa Iwata; Hidenori Kamiguchi; Toshimasa Tanaka; Satoshi Sogabe; Yoshikazu Ohta; Tomoyasu Ishikawa

A novel 7,6 fused bicyclic scaffold, pyrimido[4,5-b]azepine was designed to fit into the ATP binding site of the HER2/EGFR proteins. The synthesis of this scaffold was accomplished by an intramolecular Claisen-type condensation. As the results of optimization lead us to 4-anilino and 6-functional groups, we discovered 6-substituted amide derivative 19b, which has a 1-benzothiophen-4-yloxy group attached to the 4-anilino group. An X-ray co-crystal structure of 19b with EGFR demonstrated that the N-1 and N-3 nitrogens of the pyrimido[4,5-b]azepine scaffold make hydrogen-bonding interactions with the main chain NH of Met793 and the side chain of Thr854 via a water-mediated hydrogen bond network, respectively. In addition, the NH proton at the 9-position makes an additional hydrogen bond with the carbonyl group of Met793, as we expected. Compound 19b revealed potent HER2/EGFR kinase (IC50: 24/36 nM) and BT474 cell growth (GI50: 18 nM) inhibitory activities based on its pseudo-irreversible (PI) profile.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis, and evaluation of novel VEGFR2 kinase inhibitors: Discovery of [1,2,4]triazolo[1,5-a]pyridine derivatives with slow dissociation kinetics

Yuya Oguro; Douglas R. Cary; Naoki Miyamoto; Michiko Tawada; Hidehisa Iwata; Hiroshi Miki; Akira Hori; Shinichi Imamura

For the purpose of discovering novel type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase, we designed and synthesized 5,6-fused heterocyclic compounds bearing a anilide group. A co-crystal structure analysis of imidazo[1,2-b]pyridazine derivative 2 with VEGFR2 revealed that the N1-nitrogen of imidazo[1,2-b]pyridazine core interacts with the backbone NH group of Cys919. To retain this essential interaction, we designed a series of imidazo[1,2-a]pyridine, [1,2,4]triazolo[1,5-a]pyridine, thiazolo[5,4-b]pyridine, and 1,3-benzothiazole derivatives maintaining a ring nitrogen as hydrogen bond acceptor (HBA) at the corresponding position. All compounds thus designed displayed strong inhibitory activity against VEGFR2 kinase, and the [1,2,4]triazolo[1,5-a]pyridine 13d displayed favorable physicochemical properties. Furthermore, 13d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited platelet-derived growth factor receptor (PDGFR) kinases. Oral administration of 13d showed potent anti-tumor efficacy in DU145 and A549 xenograft models in nude mice.


Journal of Medicinal Chemistry | 2012

Design and Synthesis of Pyrrolo[3,2-d]pyrimidine Human Epidermal Growth Factor Receptor 2 (HER2)/Epidermal Growth Factor Receptor (EGFR) Dual Inhibitors: Exploration of Novel Back-Pocket Binders

Youichi Kawakita; Hiroshi Banno; Tomohiro Ohashi; Toshiya Tamura; Tadashi Yusa; Akiko Nakayama; Hiroshi Miki; Hidehisa Iwata; Hidenori Kamiguchi; Toshimasa Tanaka; Noriyuki Habuka; Satoshi Sogabe; Yoshikazu Ohta; Tomoyasu Ishikawa

To develop novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) kinase inhibitors, we explored pyrrolo[3,2-d]pyrimidine derivatives bearing bicyclic fused rings designed to fit the back pocket of the HER2/EGFR proteins. Among them, the 1,2-benzisothiazole (42m) ring was selected as a suitable back pocket binder because of its potent HER2/EGFR binding and cell growth inhibitory (GI) activities and pseudoirreversibility (PI) profile as well as good bioavailability (BA). Ultimately, we arrived at our preclinical candidate 51m by optimization of the N-5 side chain to improve CYP inhibition and metabolic stability profiles without a loss of potency (HER2/EGFR inhibitory activity, IC(50), 0.98/2.5 nM; and GI activity BT-474 cells, GI(50), 2.0 nM). Reflecting the strong in vitro activities, 51m exhibited potent tumor regressive efficacy against both HER2- and EGFR-overexpressing tumor (4-1ST and CAL27) xenograft models in mice at oral doses of 50 mg/kg and 100 mg/kg.


Bioorganic & Medicinal Chemistry | 2011

Biochemical characterization of a novel type-II VEGFR2 kinase inhibitor: comparison of binding to non-phosphorylated and phosphorylated VEGFR2.

Hidehisa Iwata; Shinichi Imamura; Akira Hori; Mark S. Hixon; Hiroyuki Kimura; Hiroshi Miki

A pyrrolo[3,2-d]pyrimidine-based type-II vascular endothelial growth factor receptor 2 (VEGFR2) kinase inhibitor, compound 20d, displayed time-dependent inhibition of the non-phosphorylated catalytic domain of VEGFR2. In contrast, 20d did not show time-dependent inhibition of the phosphorylated enzyme. Dissociation of 20d from non-phosphorylated VEGFR2 was slow and the half-life of the complex was longer than 4h. In contrast, dissociation of 20d from the phosphorylated enzyme was very fast (half-life <5min). A fluorescent tracer based displacement assay and surface plasmon resonance (SPR) analysis confirmed the slow dissociation of 20d from only non-phosphorylated VEGFR2. Thus, activity based and binding kinetic analyses both supported slow dissociation of 20d from only non-phosphorylated VEGFR2. Additionally SPR analysis revealed that association rates were rapid and nearly identical for these two phosphorylation forms of VEGFR2. From these results, the preferential effect of 20d on non-phosphorylated VEGFR2 is dominated by its slow dissociation from the enzyme and this characteristically long residence time may increase its potency in vivo. The present findings may assist in the design of novel type-II kinase inhibitors.


Molecular Cancer Therapeutics | 2013

A Novel Inhibitor of c-Met and VEGF Receptor Tyrosine Kinases with a Broad Spectrum of In Vivo Antitumor Activities

Yoshiko Awazu; Kazuhide Nakamura; Akio Mizutani; Yuichi Kakoi; Hidehisa Iwata; Seiji Yamasaki; Naoki Miyamoto; Shinichi Imamura; Hiroshi Miki; Akira Hori

The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. VEGF also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFR). Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of tumors. Toward this goal, we generated and characterized T-1840383, a small-molecule kinase inhibitor that targets both c-Met and VEGFRs. T-1840383 inhibited HGF-induced c-Met phosphorylation and VEGF-induced VEGFR-2 phosphorylation in cancer epithelial cells and vascular endothelial cells, respectively. It also inhibited constitutively activated c-Met phosphorylation in c-met–amplified cancer cells, leading to suppression of cell proliferation. In addition, T-1840383 potently blocked VEGF-dependent proliferation and capillary tube formation of endothelial cells. Following oral administration, T-1840383 showed potent antitumor efficacy in a wide variety of human tumor xenograft mouse models, along with reduction of c-Met phosphorylation levels and microvessel density within tumor xenografts. These results suggest that the efficacy of T-1840383 is produced by direct effects on tumor cell growth and by an antiangiogenic mechanism. Furthermore, T-1840383 showed profound antitumor activity in a gastric tumor peritoneal dissemination model. Collectively, our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for the treatment of human cancers. Mol Cancer Ther; 12(6); 913–24. ©2013 AACR.

Collaboration


Dive into the Hidehisa Iwata's collaboration.

Top Co-Authors

Avatar

Hiroshi Miki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akira Hori

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shinichi Imamura

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Naoki Miyamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yoshiko Awazu

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Terufumi Takagi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Yuya Oguro

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akio Mizutani

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kenichi Kazetani

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge