Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iulia Diaconu is active.

Publication


Featured researches published by Iulia Diaconu.


Molecular Therapy | 2010

Treatment of Cancer Patients With a Serotype 5/3 Chimeric Oncolytic Adenovirus Expressing GMCSF

Anniina Koski; Lotta Kangasniemi; Sophie Escutenaire; Sari Pesonen; Vincenzo Cerullo; Iulia Diaconu; Petri Nokisalmi; Mari Raki; Maria Rajecki; Kilian Guse; Tuuli Ranki; Minna Oksanen; Sirkka-Liisa Holm; Elina Haavisto; Aila Karioja-Kallio; Leena Laasonen; Kaarina Partanen; Matteo Ugolini; Andreas Helminen; Eerika Karli; Päivi Hannuksela; S Pesonen; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Augmenting antitumor immunity is a promising way to enhance the potency of oncolytic adenoviral therapy. Granulocyte-macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific CD8(+) cytotoxic T-lymphocytes. Serotype 5 adenoviruses (Ad5) are commonly used in cancer gene therapy. However, expression of the coxsackie-adenovirus receptor is variable in many advanced tumors and preclinical data have demonstrated an advantage for replacing the Ad5 knob with the Ad3 knob. Here, a 5/3 capsid chimeric and p16-Rb pathway selective oncolytic adenovirus coding for GMCSF was engineered and tested preclinically. A total of 21 patients with advanced solid tumors refractory to standard therapies were then treated intratumorally and intravenously with Ad5/3-D24-GMCSF, which was combined with low-dose metronomic cyclophosphamide to reduce regulatory T cells. No severe adverse events occurred. Analysis of pretreatment samples of malignant pleural effusion and ascites confirmed the efficacy of Ad5/3-D24-GMCSF in transduction and cell killing. Evidence of biological activity of the virus was seen in 13/21 patients and 8/12 showed objective clinical benefit as evaluated by radiology with Response Evaluation Criteria In Solid Tumors (RECIST) criteria. Antiadenoviral and antitumoral immune responses were elicited after treatment. Thus, Ad5/3-D24-GMCSF seems safe in treating cancer patients and promising signs of efficacy were seen.


Cancer Research | 2010

Oncolytic Adenovirus Coding for Granulocyte Macrophage Colony-Stimulating Factor Induces Antitumoral Immunity in Cancer Patients

Vincenzo Cerullo; Sari Pesonen; Iulia Diaconu; Sophie Escutenaire; Petteri Arstila; Matteo Ugolini; Petri Nokisalmi; Mari Raki; Leena Laasonen; Merja Särkioja; Maria Rajecki; Lotta Kangasniemi; Kilian Guse; Andreas Helminen; Laura Ahtiainen; Ari Ristimäki; Anne Räisänen-Sokolowski; Elina Haavisto; Minna Oksanen; Eerika Karli; Aila Karioja-Kallio; Sirkka-Liisa Holm; Mauri Kouri; Timo Joensuu; Anna Kanerva; Akseli Hemminki

Granulocyte macrophage colony-stimulating factor (GMCSF) can mediate antitumor effects by recruiting natural killer cells and by induction of tumor-specific cytotoxic T-cells through antigen-presenting cells. Oncolytic tumor cell-killing can produce a potent costimulatory danger signal and release of tumor epitopes for antigen-presenting cell sampling. Therefore, an oncolytic adenovirus coding for GMCSF was engineered and shown to induce tumor-specific immunity in an immunocompetent syngeneic hamster model. Subsequently, 20 patients with advanced solid tumors refractory to standard therapies were treated with Ad5-D24-GMCSF. Of the 16 radiologically evaluable patients, 2 had complete responses, 1 had a minor response, and 5 had disease stabilization. Responses were frequently seen in injected and noninjected tumors. Treatment was well tolerated and resulted in the induction of both tumor-specific and virus-specific immunity as measured by ELISPOT and pentamer analysis. This is the first time that oncolytic virus-mediated antitumor immunity has been shown in humans. Ad5-D24-GMCSF is promising for further clinical testing.


Molecular Therapy | 2011

Immunological Effects of Low-dose Cyclophosphamide in Cancer Patients Treated With Oncolytic Adenovirus

Vincenzo Cerullo; Iulia Diaconu; Lotta Kangasniemi; Maria Rajecki; Sophie Escutenaire; Anniina Koski; Valentina Romano; Noora Rouvinen; Tamara Tuuminen; Leena Laasonen; Kaarina Partanen; Satu Kauppinen; Timo Joensuu; Minna Oksanen; Sirkka-Liisa Holm; Elina Haavisto; Aila Karioja-Kallio; Anna Kanerva; Sari Pesonen; Petteri Arstila; Akseli Hemminki

Patients with advanced solid tumors refractory to and progressing after conventional therapies were treated with three different regimens of low-dose cyclophosphamide (CP) in combination with oncolytic adenovirus. CP was given with oral metronomic dosing (50 mg/day, N = 21), intravenously (single 1,000 mg dose, N = 7) or both (N = 7). Virus was injected intratumorally. Controls (N = 8) received virus without CP. Treatments were well tolerated and safe regardless of schedule. Antibody formation and virus replication were not affected by CP. Metronomic CP (oral and oral + intravenous schedules) decreased regulatory T cells (T(regs)) without compromising induction of antitumor or antiviral T-cell responses. Oncolytic adenovirus given together with metronomic CP increased cytotoxic T cells and induced Th1 type immunity on a systemic level in most patients. All CP regimens resulted in higher rates of disease control than virus only (all P < 0.0001) and the best progression-free (PFS) and overall survival (OS) was seen in the oral + intravenous group. One year PFS and OS were 53 and 42% (P = 0.0016 and P < 0.02 versus virus only), respectively, both which are unusually high for chemotherapy refractory patients. We conclude that low-dose CP results in immunological effects appealing for oncolytic virotherapy. While these first-in-human data suggest good safety, intriguing efficacy and extended survival, the results should be confirmed in a randomized trial.


Cancer Research | 2012

Oncolytic Immunotherapy of Advanced Solid Tumors with a CD40L-Expressing Replicating Adenovirus: Assessment of Safety and Immunologic Responses in Patients

Sari Pesonen; Iulia Diaconu; Lotta Kangasniemi; Tuuli Ranki; Anna Kanerva; S Pesonen; Ulrike Gerdemann; Ann M. Leen; Kalevi Kairemo; Minna Oksanen; Elina Haavisto; Sirkka-Liisa Holm; Aila Karioja-Kallio; Satu Kauppinen; Kaarina Partanen; Leena Laasonen; T. Joensuu; Tuomo Alanko; Vincenzo Cerullo; Akseli Hemminki

The immunosuppressive environment of advanced tumors is a primary obstacle to the efficacy of immunostimulatory and vaccine approaches. Here, we report an approach to arm an oncolytic virus with CD40 ligand (CD40L) to stimulate beneficial immunologic responses in patients. A double-targeted chimeric adenovirus controlled by the hTERT promoter and expressing CD40L (CGTG-401) was constructed and nine patients with progressing advanced solid tumors refractory to standard therapies were treated intratumorally. No serious adverse events resulting in patient hospitalization occurred. Moderate or no increases in neutralizing antibodies were seen, suggesting effective Th1 immunologic effects. An assessment of the blood levels of virus indicated 17.5% of the samples (n = 40) were positive at a low level early after treatment, but not thereafter. In contrast, high levels of virus, CD40L, and RANTES were documented locally at the tumor. Peripheral blood mononuclear cells were analyzed by IFN-γ ELISPOT analysis and induction of both survivin-specific and adenovirus-specific T cells was seen. Antitumor T-cell responses were even more pronounced when assessed by intracellular cytokine staining after stimulation with tumor type-specific peptide pools. Of the evaluable patients, 83% displayed disease control at 3 months and in both cases in which treatment was continued the effect was sustained for at least 8 months. Injected and noninjected lesions responded identically. Together, these findings support further clinical evaluation of CGTG-401.


Cancer Research | 2012

Immune Response Is an Important Aspect of the Antitumor Effect Produced by a CD40L-Encoding Oncolytic Adenovirus

Iulia Diaconu; Vincenzo Cerullo; Mari Hirvinen; Sophie Escutenaire; Matteo Ugolini; S Pesonen; Simona Bramante; Suvi Parviainen; Anna Kanerva; Angelica Loskog; Aristides G. Eliopoulos; Sari Pesonen; Akseli Hemminki

Oncolytic adenovirus is an attractive platform for immunotherapy because virus replication is highly immunogenic and not subject to tolerance. Although oncolysis releases tumor epitopes and provides costimulatory danger signals, arming the virus with immunostimulatory molecules can further improve efficacy. CD40 ligand (CD40L, CD154) induces apoptosis of tumor cells and triggers several immune mechanisms, including a T-helper type 1 (T(H)1) response, which leads to activation of cytotoxic T cells and reduction of immunosuppression. In this study, we constructed a novel oncolytic adenovirus, Ad5/3-hTERT-E1A-hCD40L, which features a chimeric Ad5/3 capsid for enhanced tumor transduction, a human telomerase reverse transcriptase (hTERT) promoter for tumor selectivity, and human CD40L for increased efficacy. Ad5/3-hTERT-E1A-hCD40L significantly inhibited tumor growth in vivo via oncolytic and apoptotic effects, and (Ad5/3-hTERT-E1A-hCD40L)-mediated oncolysis resulted in enhanced calreticulin exposure and HMGB1 and ATP release, which were suggestive of immunogenicity. In two syngeneic mouse models, murine CD40L induced recruitment and activation of antigen-presenting cells, leading to increased interleukin-12 production in splenocytes. This effect was associated with induction of the T(H)1 cytokines IFN-γ, RANTES, and TNF-α. Tumors treated with Ad5/3-CMV-mCD40L also displayed an enhanced presence of macrophages and cytotoxic CD8(+) T cells but not B cells. Together, our findings show that adenoviruses coding for CD40L mediate multiple antitumor effects including oncolysis, apoptosis, induction of T-cell responses, and upregulation of T(H)1 cytokines.


Cancer Research | 2014

Armed Oncolytic Virus Enhances Immune Functions of Chimeric Antigen Receptor–Modified T Cells in Solid Tumors

Nobuhiro Nishio; Iulia Diaconu; Hao Liu; Vincenzo Cerullo; Ignazio Caruana; Valentina Hoyos; Lisa Bouchier-Hayes; Barbara Savoldo; Gianpietro Dotti

The clinical efficacy of chimeric antigen receptor (CAR)-redirected T cells remains marginal in solid tumors compared with leukemias. Failures have been attributed to insufficient T-cell migration and to the highly immunosuppressive milieu of solid tumors. To overcome these obstacles, we have combined CAR-T cells with an oncolytic virus armed with the chemokine RANTES and the cytokine IL15, reasoning that the modified oncolytic virus will both have a direct lytic effect on infected malignant cells and facilitate migration and survival of CAR-T cells. Using neuroblastoma as a tumor model, we found that the adenovirus Ad5Δ24 exerted a potent, dose-dependent, cytotoxic effect on tumor cells, whereas CAR-T cells specific for the tumor antigen GD2 (GD2.CAR-T cells) were not damaged. When used in combination, Ad5Δ24 directly accelerated the caspase pathways in tumor cells exposed to CAR-T cells, whereas the intratumoral release of both RANTES and IL15 attracted CAR-T cells and promoted their local survival, respectively, increasing the overall survival of tumor-bearing mice. These preclinical data support the use of this innovative biologic platform of immunotherapy for solid tumors. Cancer Res; 74(18); 5195-205. ©2014 AACR.


Molecular Therapy | 2013

Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients.

Ilkka Liikanen; Laura Ahtiainen; Mari Hirvinen; Simona Bramante; Vincenzo Cerullo; Petri Nokisalmi; Otto Hemminki; Iulia Diaconu; Sari Pesonen; Anniina Koski; Lotta Kangasniemi; S Pesonen; Minna Oksanen; Leena Laasonen; Kaarina Partanen; Timo Joensuu; Fang Zhao; Anna Kanerva; Akseli Hemminki

Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy.


Clinical Cancer Research | 2013

Antiviral and Antitumor T-cell Immunity in Patients Treated with GM-CSF–Coding Oncolytic Adenovirus

Anna Kanerva; Petri Nokisalmi; Iulia Diaconu; Anniina Koski; Vincenzo Cerullo; Ilkka Liikanen; Siri Tähtinen; Minna Oksanen; Raita Heiskanen; S Pesonen; T. Joensuu; Tuomo Alanko; Kaarina Partanen; Leena Laasonen; Kalevi Kairemo; Sari Pesonen; Lotta Kangasniemi; Akseli Hemminki

Purpose: Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously naïve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a “serial treatment” consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM–CSF)–coding capsid chimeric adenovirus, CGTG-102. Results: Following serial treatment, both increase and decrease in antitumor T cells in blood were seen more frequently, findings which are compatible with induction of T-cell immunity and trafficking of T cells to tumors, respectively. Safety was good in both groups. In 115 patients treated with CGTG-102 (Ad5/3-D24-GMCSF), median overall survival was 111 days following single and 277 days after serial treatment in nonrandomized comparison. Switching the virus capsid for avoiding neutralizing antibodies in a serial treatment featuring three different viruses did not impact safety or efficacy. A correlation between antiviral and antitumor T cells was seen (P = 0.001), suggesting that viral oncolysis can result in epitope spreading and breaking of tumor-associated immunologic tolerance. Alternatively, some patients may be more susceptible to induction of T-cell immunity and/or trafficking. Conclusions: These results provide the first human data linking antiviral immunity with antitumor immunity, implying that oncolytic viruses could have an important role in cancer immunotherapy. Clin Cancer Res; 19(10); 2734–44. ©2013 AACR.


Gene Therapy | 2012

Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4

João D. Dias; Otto Hemminki; Iulia Diaconu; Mari Hirvinen; A Bonetti; Kilian Guse; Sophie Escutenaire; A Kanerva; Sari Pesonen; Angelica Loskog; Cerullo; Akseli Hemminki

Promising clinical results have been achieved with monoclonal antibodies (mAbs) such as ipilimumab and tremelimumab that block cytotoxic T lymphocyte-associated antigen-4 (CTLA-4, CD152). However, systemic administration of these agents also has the potential for severe immune-related adverse events. Thus, local production might allow higher concentrations at the target while reducing systemic side effects. We generated a transductionally and transcriptionally targeted oncolytic adenovirus Ad5/3-Δ24aCTLA4 expressing complete human mAb specific for CTLA-4 and tested it in vitro, in vivo and in peripheral blood mononuclear cells (PBMCs) of normal donors and patients with advanced solid tumors. mAb expression was confirmed by western blotting and immunohistochemistry. Biological functionality was determined in a T-cell line and in PBMCs from cancer patients. T cells of patients, but not those of healthy donors, were activated by an anti-CTLA4mAb produced by Ad5/3-Δ24aCTLA4. In addition to immunological effects, a direct anti-CTLA-4-mediated pro-apoptotic effect was observed in vitro and in vivo. Local production resulted in 43-fold higher (P<0.05) tumor versus plasma anti-CTLA4mAb concentration. Plasma levels in mice remained below what has been reported safe in humans. Replication-competent Ad5/3-Δ24aCTLA4 resulted in 81-fold higher (P<0.05) tumor mAb levels as compared with a replication-deficient control. This is the first report of an oncolytic adenovirus producing a full-length human mAb. High mAb concentrations were seen at tumors with lower systemic levels. Stimulation of T cells of cancer patients by Ad5/3-Δ24aCTLA4 suggests feasibility of testing the approach in clinical trials.


International Journal of Cancer | 2012

Integrin targeted oncolytic adenoviruses Ad5‐D24‐RGD and Ad5‐RGD‐D24‐GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors

Sari Pesonen; Iulia Diaconu; Vincenzo Cerullo; Sophie Escutenaire; Mari Raki; Lotta Kangasniemi; Petri Nokisalmi; Gianpietro Dotti; Kilian Guse; Leena Laasonen; Kaarina Partanen; Eerika Karli; Elina Haavisto; Minna Oksanen; Aila Karioja-Kallio; Päivi Hannuksela; Sirkka Liisa Holm; Satu Kauppinen; Timo Joensuu; Anna Kanerva; Akseli Hemminki

The safety of oncolytic viruses for treatment of cancer has been shown in clinical trials while antitumor efficacy has often remained modest. As expression of the coxsackie‐adenovirus receptor may be variable in advanced tumors, we developed Ad5‐D24‐RGD, a p16/Rb pathway selective oncolytic adenovirus featuring RGD‐4C modification of the fiber. This allows viral entry through alpha‐v‐beta integrins frequently highly expressed in advanced tumors. Advanced tumors are often immunosuppressive which results in lack of tumor eradication despite abnormal epitopes being present. Granulocyte‐macrophage colony stimulating factor (GMCSF) is a potent activator of immune system with established antitumor properties. To stimulate antitumor immunity and break tumor associated immunotolerance, we constructed Ad5‐RGD‐D24‐GMCSF, featuring GMCSF controlled by the adenoviral E3 promoter. Preliminary safety of Ad5‐D24‐RGD and Ad5‐RGD‐D24‐GMCSF for treatment of human cancer was established. Treatments with Ad5‐D24‐RGD (N = 9) and Ad5‐RGD‐D24‐GMCSF (N = 7) were well tolerated. Typical side effects were grade 1‐2 fatigue, fever and injection site pain. 77% (10/13) of evaluable patients showed virus in circulation for at least 2 weeks. In 3 out of 6 evaluable patients, disease previously progressing stabilized after a single treatment with Ad5‐RGD‐D24‐GMCSF. In addition, 2/3 patients had stabilization or reduction in tumor marker levels. All patients treated with Ad5‐D24‐RGD showed disease progression in radiological analysis, although 3/6 had temporary reduction or stabilization of marker levels. Induction of tumor and adenovirus specific immunity was demonstrated with ELISPOT in Ad5‐RGD‐D24‐GMCSF treated patients. RGD modified oncolytic adenoviruses with or without GMCSF seem safe for further clinical development.

Collaboration


Dive into the Iulia Diaconu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sari Pesonen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Pesonen

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Timo Joensuu

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge