Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Al Ivens is active.

Publication


Featured researches published by Al Ivens.


Journal of Bacteriology | 2009

The Global Consequence of Disruption of the AcrAB-TolC Efflux Pump in Salmonella enterica Includes Reduced Expression of SPI-1 and Other Attributes Required To Infect the Host

Mark A. Webber; Andrew M. Bailey; Jessica M. A. Blair; Eirwen Morgan; Mark P. Stevens; Jay C. D. Hinton; Al Ivens; John Wain; Laura J. V. Piddock

The mechanisms by which RND pumps contribute to pathogenicity are currently not understood. Using the AcrAB-TolC system as a paradigm multidrug-resistant efflux pump and Salmonella enterica serovar Typhimurium as a model pathogen, we have demonstrated that AcrA, AcrB, and TolC are each required for efficient adhesion to and invasion of epithelial cells and macrophages by Salmonella in vitro. In addition, AcrB and TolC are necessary for Salmonella to colonize poultry. Mutants lacking acrA, acrB, or tolC showed differential expression of major operons and proteins involved in pathogenesis. These included chemotaxis and motility genes, including cheWY and flgLMK and 14 Salmonella pathogenicity island (SPI)-1-encoded type III secretion system genes, including sopE, and associated effector proteins. Reverse transcription-PCR confirmed these data for identical mutants in two other S. Typhimurium backgrounds. Western blotting showed reduced production of SipA, SipB, and SipC. The absence of AcrB or TolC also caused widespread repression of chemotaxis and motility genes in these mutants, and for acrB::aph, this was associated with decreased motility. For mutants lacking a functional acrA or acrB gene, the nap and nir operons were repressed, and both mutants grew poorly in anaerobic conditions. All phenotypes were restored to that of the wild type by trans-complementation with the wild-type allele of the respective inactivated gene. These data explain how mutants lacking a component of AcrAB-TolC are attenuated and that this phenotype is a result of decreased expression of numerous genes encoding proteins involved in pathogenicity. The link between antibiotic resistance and pathogenicity establishes the AcrAB-TolC system as fundamental to the biology of Salmonella.


Comparative and Functional Genomics | 2001

A Re-Annotation of the Saccharomyces cerevisiae Genome

Valerie Wood; Kim Rutherford; Al Ivens; M-A Rajandream; Bart Barrell

Discrepancies in gene and orphan number indicated by previous analyses suggest that S. cerevisiae would benefit from a consistent re-annotation. In this analysis three new genes are identified and 46 alterations to gene coordinates are described. 370 ORFs are defined as totally spurious ORFs which should be disregarded. At least a further 193 genes could be described as very hypothetical, based on a number of criteria. It was found that disparate genes with sequence overlaps over ten amino acids (especially at the N-terminus) are rare in both S. cerevisiae and Sz. pombe. A new S. cerevisiae gene number estimate with an upper limit of 5804 is proposed, but after the removal of very hypothetical genes and pseudogenes this is reduced to 5570. Although this is likely to be closer to the true upper limit, it is still predicted to be an overestimate of gene number. A complete list of revised gene coordinates is available from the Sanger Centre (S. cerevisiae reannotation: ftp://ftp/pub/yeast/SCreannotation).


Journal of Bacteriology | 2010

RamA, a Member of the AraC/XylS Family, Influences Both Virulence and Efflux in Salmonella enterica Serovar Typhimurium

Andrew M. Bailey; Al Ivens; Robert A. Kingsley; Jennifer L. Cottell; John Wain; Laura J. V. Piddock

The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 lacking a functional ramA or ramR or with plasmid-mediated high-level overexpression of ramA were compared to those of the wild-type parental strain. Inactivation of ramA led to increased expression of 14 SPI-1 genes and decreased expression of three SPI-2 genes, and it altered expression of ribosomal biosynthetic genes and several amino acid biosynthetic pathways. Furthermore, disruption of ramA led to decreased survival within RAW 264.7 mouse macrophages and attenuation within the BALB/c ByJ mouse model. Highly overexpressed ramA led to increased expression of genes encoding multidrug resistance (MDR) efflux pumps, including acrAB, acrEF, and tolC. Decreased expression of 34 Salmonella pathogenicity island (SPI) 1 and 2 genes, decreased SipC production, decreased adhesion to and survival within macrophages, and decreased colonization of Caenorhabditis elegans were also seen. Disruption of ramR led to the increased expression of ramA, acrAB, and tolC, but not to the same level as when ramA was overexpressed on a plasmid. Inactivation of ramR had a more limited effect on pathogenicity gene expression. In silico analysis of a suggested RamA-binding consensus sequence identified target genes, including ramR, acrA, tolC, sipABC, and ssrA. This study demonstrates that the regulation of a mechanism of MDR and expression of virulence genes show considerable overlap, and we postulate that such a mechanism is dependent on transcriptional activator concentration and promoter sensitivity. However, we have no evidence to support the hypothesis that increased MDR via RamA regulation of AcrAB-TolC gives rise to a hypervirulent strain.


Genomics | 2006

Analysis of ESTs from Lutzomyia longipalpis sand flies and their contribution toward understanding the insect-parasite relationship

Rod J. Dillon; Al Ivens; Carol Churcher; Nancy Holroyd; Michael A. Quail; Matthew E. Rogers; M. Bento Soares; Maria F. Bonaldo; Thomas L. Casavant; Michael J. Lehane; Paul A. Bates

An expressed sequence tag library has been generated from a sand fly vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed from whole adults and 16,608 clones were sequenced from both ends and assembled into 10,203 contigs and singlets. Of these 58% showed significant similarity to known genes from other organisms, < 4% were identical to described sand fly genes, and 42% had no match to any database sequence. Our analyses revealed putative proteins involved in the barrier function of the gut (peritrophins, microvillar proteins, glutamine synthase), digestive physiology (secreted and membrane-anchored hydrolytic enzymes), and the immune response (gram-negative binding proteins, thioester proteins, scavenger receptors, galectins, signaling pathway factors, caspases, serpins, and peroxidases). Sequence analysis of this transcriptome dataset has provided new insights into genes that might be associated with the response of the vector to the development of Leishmania.


Infection and Immunity | 2005

Identification of core and variable components of the Salmonella enterica subspecies I genome by microarray.

Muna F. Anjum; Chris Marooney; Maria Fookes; Stephen Baker; Gordon Dougan; Al Ivens; Martin J. Woodward

ABSTRACT We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S.enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.


Journal of Antimicrobial Chemotherapy | 2009

Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification

Andrew M. Bailey; Chrystala Constantinidou; Al Ivens; Mark I. Garvey; Mark A. Webber; Nick G. Coldham; Jon L. Hobman; John Wain; Martin J. Woodward; Laura J. V. Piddock

OBJECTIVES The use of triclosan within various environments has been linked to the development of multiple drug resistance (MDR) through the increased expression of efflux pumps such as AcrAB-TolC. In this work, we investigate the effect of triclosan exposure in order to ascertain the response of two species to the presence of this widely used biocide. METHODS The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 and Escherichia coli K-12 MG1655 after exposure to the MIC of triclosan (0.12 mg/L) were determined in microarray experiments. Phenotypic validation of the transcriptomic data included RT-PCR, ability to form a biofilm and motility assays. RESULTS Despite important differences in the triclosan-dependent transcriptomes of the two species, increased expression of efflux pump component genes was seen in both. Increased expression of soxS was observed in Salmonella Typhimurium, however, within E. coli, decreased expression was seen. Expression of fabBAGI in Salmonella Typhimurium was decreased, whereas in E. coli expression of fabABFH was increased. Increased expression of ompR and genes within this regulon (e.g. ompC, csgD and ssrA) was seen in the transcriptome of Salmonella Typhimurium. An unexpected response of E. coli was the differential expression of genes within operons involved in iron homeostasis; these included fhu, fep and ent. CONCLUSIONS These data indicate that whilst a core response to triclosan exposure exists, the differential transcriptome of each species was different. This suggests that E. coli K-12 should not be considered the paradigm for the Enterobacteriaceae when exploring the effects of antimicrobial agents.


Molecular and Biochemical Parasitology | 2008

Fasciola hepatica expresses multiple alpha- and beta-tubulin isotypes.

Louise A. Ryan; Elizabeth M. Hoey; Alan Trudgett; Ian Fairweather; Marc Fuchs; Mark W. Robinson; Emma Chambers; David J. Timson; Eimear Ryan; Theresa Feltwell; Al Ivens; Geoffrey N. Bentley; David A. Johnston

We have identified five α-tubulin and six β-tubulin isotypes that are expressed in adult Fasciola hepatica. Amino acid sequence identities ranged between 72 and 95% for fluke α-tubulin and between 65 and 97% for β-tubulin isotypes. Nucleotide sequence identity ranged between 68–77% and 62–80%, respectively, for their coding sequences. Phylogenetic analysis indicated that two of the α-tubulins and two of the β-tubulins were distinctly divergent from the other trematode and nematode tubulin sequences described in this study, whereas the other isotypes segregated within the trematode clades. With regard to the proposed benzimidazole binding site on β-tubulin, three of the fluke isotypes had tyrosine at position 200 of β-tubulin, two had phenylalanine and one had leucine. All had phenylalanine at position 167 and glutamic acid at position 198. When isotype RT-PCR fragment sequences were compared between six individual flukes from the susceptible Cullompton isolate and from seven individual flukes from the two resistant isolates, Sligo and Oberon, these residues were conserved.


International Journal for Parasitology | 2001

Parasite genome initiatives

Wim Degrave; Sara E. Melville; Al Ivens; Martin Aslett

During 1993-1994, scientists from developing and developed countries planned and initiated a number of parasite genome projects and several consortiums for the mapping and sequencing of these medium-sized genomes were established, often based on already ongoing scientific collaborations. Financial and other support came from WHO/TDR, Wellcome Trust and other funding agencies. Thus, the genomes of Plasmodium falciparum, Schistosoma mansoni, Trypanosoma cruzi, Leishmania major, Trypanosoma brucei, Brugia malayi and other pathogenic nematodes are now under study. From an initial phase of network formation, mapping efforts and resource building (EST, GSS, phage, cosmid, BAC and YAC library constructions), sequencing was initiated in gene discovery projects but soon also on a small chromosome, and now on a fully fledged genome scale. Proteomics, functional analysis, genetic manipulation and microarray analysis are ongoing to different degrees in the respective genome initiatives, and as the funding for the whole genome sequencing becomes secured, most of the participating laboratories, apart from larger sequencing centres, become oriented to post-genomics. Bioinformatics networks are being expanded, including in developing countries, for data mining, annotation and in-depth analysis.


Journal of Bacteriology | 2005

Analysis of the Hypervariable Region of the Salmonella enterica Genome Associated with tRNAleuX

Anne L. Bishop; Stephen Baker; Sara Jenks; Maria Fookes; Peadar Ó Gaora; Derek Pickard; Muna F. Anjum; Jeremy Farrar; Tran Tinh Hien; Al Ivens; Gordon Dougan

The divergence of Salmonella enterica and Escherichia coli is estimated to have occurred approximately 140 million years ago. Despite this evolutionary distance, the genomes of these two species still share extensive synteny and homology. However, there are significant differences between the two species in terms of genes putatively acquired via various horizontal transfer events. Here we report on the composition and distribution across the Salmonella genus of a chromosomal region designated SPI-10 in Salmonella enterica serovar Typhi and located adjacent to tRNA(leuX). We find that across the Salmonella genus the tRNA(leuX) region is a hypervariable hot spot for horizontal gene transfer; different isolates from the same S. enterica serovar can exhibit significant variation in this region. Many P4 phage, plasmid, and transposable element-associated genes are found adjacent to tRNA(leuX) in both Salmonella and E. coli, suggesting that these mobile genetic elements have played a major role in driving the variability of this region.


Microbiology | 2009

Identification of genetic and phenotypic differences associated with prevalent and non-prevalent Salmonella Enteritidis phage types: analysis of variation in amino acid transport.

Zhensheng Pan; Ben Richard Carter; Javier Nunez-Garcia; Manal AbuOun; Maria Fookes; Al Ivens; Martin J. Woodward; Muna F. Anjum

In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized l-histidine, l-glutamine, l-proline, l-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.

Collaboration


Dive into the Al Ivens's collaboration.

Top Co-Authors

Avatar

John Wain

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Maria Fookes

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Gareth Bloomfield

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Jason Skelton

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Muna F. Anjum

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar

Robert R. Kay

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celine Carret

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge