Maria Fookes
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Fookes.
Bioinformatics | 2015
Andrew J. Page; Carla Cummins; Martin Hunt; Vanessa K. Wong; Sandra Reuter; Matthew T. G. Holden; Maria Fookes; Daniel Falush; Jacqueline A. Keane; Julian Parkhill
Summary: A typical prokaryote population sequencing study can now consist of hundreds or thousands of isolates. Interrogating these datasets can provide detailed insights into the genetic structure of prokaryotic genomes. We introduce Roary, a tool that rapidly builds large-scale pan genomes, identifying the core and accessory genes. Roary makes construction of the pan genome of thousands of prokaryote samples possible on a standard desktop without compromising on the accuracy of results. Using a single CPU Roary can produce a pan genome consisting of 1000 isolates in 4.5 hours using 13 GB of RAM, with further speedups possible using multiple processors. Availability and implementation: Roary is implemented in Perl and is freely available under an open source GPLv3 license from http://sanger-pathogens.github.io/Roary Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
PLOS Genetics | 2009
Timothy T. Perkins; Robert A. Kingsley; Maria Fookes; Paul P. Gardner; Keith D. James; Lu-Lu Yu; Samuel A. Assefa; Miao-Xia He; Nicholas J. Croucher; Derek Pickard; Duncan J. Maskell; Julian Parkhill; Jyoti S. Choudhary; Nicholas R. Thomson; Gordon Dougan
High-density, strand-specific cDNA sequencing (ssRNA–seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3′- or 5′-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA–seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA–seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.
Science | 2013
Alison E. Mather; S. Reid; Duncan J. Maskell; Julian Parkhill; Maria Fookes; Simon R. Harris; Derek J. Brown; J E Coia; Michael R. Mulvey; Matthew W. Gilmour; Liljana Petrovska; E. de Pinna; M. Kuroda; M. Akiba; H. Izumiya; Thomas Richard Connor; Marc A. Suchard; Philippe Lemey; D. J. Mellor; Daniel T. Haydon; Nicholas R. Thomson
Sourcing Antibiotic Resistance It is widely assumed that antibiotic resistance in farm animals contributes in a major way to antibiotic resistance in humans. Mather et al. (p. 1514, published online 12 September; see the Perspective by Woolhouse and Ward) analyzed hundreds of genome sequences from Salmonella isolates collected from both livestock and patients in Scotland between 1990 and 2004. The relative contributions of animal-derived and human-derived sources of infection were quantified and the phylogenetic diversity of resistance profiles was matched with bacterial phylogenies. The results suggest that most human infections are caught from other humans rather than from livestock and that humans harbor a greater diversity of antibiotic resistance. Antibiotic resistance travels in independent epidemics in humans and their livestock. [Also see Perspective by Woolhouse and Ward] The global epidemic of multidrug-resistant Salmonella Typhimurium DT104 provides an important example, both in terms of the agent and its resistance, of a widely disseminated zoonotic pathogen. Here, with an unprecedented national collection of isolates collected contemporaneously from humans and animals and including a sample of internationally derived isolates, we have used whole-genome sequencing to dissect the phylogenetic associations of the bacterium and its antimicrobial resistance genes through the course of an epidemic. Contrary to current tenets supporting a single homogeneous epidemic, we demonstrate that the bacterium and its resistance genes were largely maintained within animal and human populations separately and that there was limited transmission, in either direction. We also show considerable variation in the resistance profiles, in contrast to the largely stable bacterial core genome, which emphasizes the critical importance of integrated genotypic data sets in understanding the ecology of bacterial zoonoses and antimicrobial resistance.
Journal of Bacteriology | 2003
Derek Pickard; John Wain; Stephen Baker; Alexandra Line; Sonia Chohan; Maria Fookes; Andrew Barron; Peadar Ó Gaora; José A. Chabalgoity; Niren Thanky; Christoph Scholes; Nicholas R. Thomson; Michael A. Quail; Julian Parkhill; Gordon Dougan
Vi capsular polysaccharide production is encoded by the viaB locus, which has a limited distribution in Salmonella enterica serovars. In S. enterica serovar Typhi, viaB is encoded on a 134-kb pathogenicity island known as SPI-7 that is located between partially duplicated tRNA(pheU) sites. Functional and bioinformatic analysis suggests that SPI-7 has a mosaic structure and may have evolved as a consequence of several independent insertion events. Analysis of viaB-associated DNA in Vi-positive S. enterica serovar Paratyphi C and S. enterica serovar Dublin isolates revealed the presence of similar SPI-7 islands. In S. enterica serovars Paratyphi C and Dublin, the SopE bacteriophage and a 15-kb fragment adjacent to the intact tRNA(pheU) site were absent. In S. enterica serovar Paratyphi C only, a region encoding a type IV pilus involved in the adherence of S. enterica serovar Typhi to host cells was missing. The remainder of the SPI-7 islands investigated exhibited over 99% DNA sequence identity in the three serovars. Of 30 other Salmonella serovars examined, 24 contained no insertions at the equivalent tRNA(pheU) site, 2 had a 3.7-kb insertion, and 4 showed sequence variation at the tRNA(pheU)-phoN junction, which was not analyzed further. Sequence analysis of the SPI-7 region from S. enterica serovar Typhi strain CT18 revealed significant synteny with clusters of genes from a variety of saprophytic bacteria and phytobacteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri. This analysis suggested that SPI-7 may be a mobile element, such as a conjugative transposon or an integrated plasmid remnant.
PLOS Pathogens | 2011
Maria Fookes; Gunnar N. Schroeder; Gemma C. Langridge; Carlos J. Blondel; Caterina Mammina; Thomas Richard Connor; Helena M. B. Seth-Smith; Georgios S. Vernikos; Keith S. Robinson; Mandy Sanders; Nicola K. Petty; Robert A. Kingsley; Andreas J. Bäumler; Sean Paul Nuccio; Inés Contreras; Carlos A. Santiviago; Duncan J. Maskell; Paul A. Barrow; Tom J. Humphrey; Antonino Nastasi; Mark Roberts; Gad Frankel; Julian Parkhill; Gordon Dougan; Nicholas R. Thomson
The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.
Nucleic Acids Research | 2009
Nicholas J. Croucher; Maria Fookes; Timothy T. Perkins; Daniel J. Turner; Samuel Marguerat; Thomas M. Keane; Michael A. Quail; Miao He; Sammey Assefa; Jürg Bähler; Robert A. Kingsley; Julian Parkhill; Stephen D. Bentley; Gordon Dougan; Nicholas R. Thomson
High-throughput sequencing of cDNA has been used to study eukaryotic transcription on a genome-wide scale to single base pair resolution. In order to compensate for the high ribonuclease activity in bacterial cells, we have devised an equivalent technique optimized for studying complete prokaryotic transcriptomes that minimizes the manipulation of the RNA sample. This new approach uses Illumina technology to sequence single-stranded (ss) cDNA, generating information on both the direction and level of transcription throughout the genome. The protocol, and associated data analysis programs, are freely available from http://www.sanger.ac.uk/Projects/Pathogens/Transcriptome/. We have successfully applied this method to the bacterial pathogens Salmonella bongori and Streptococcus pneumoniae and the yeast Schizosaccharomyces pombe. This method enables experimental validation of genetic features predicted in silico and allows the easy identification of novel transcripts throughout the genome. We also show that there is a high correlation between the level of gene expression calculated from ss-cDNA and double-stranded-cDNA sequencing, indicting that ss-cDNA sequencing is both robust and appropriate for use in quantitative studies of transcription. Hence, this simple method should prove a useful tool in aiding genome annotation and gene expression studies in both prokaryotes and eukaryotes.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Sandra Reuter; Thomas Richard Connor; Lars Barquist; Danielle Walker; Theresa Feltwell; Simon R. Harris; Maria Fookes; Miquette Hall; Nicola K. Petty; Thilo M. Fuchs; Jukka Corander; Muriel Dufour; Tamara Ringwood; Cyril Savin; Christiane Bouchier; Liliane Martin; Minna Miettinen; Mikhail Shubin; Julia M. Riehm; Riikka Laukkanen-Ninios; Leila M. Sihvonen; Anja Siitonen; Mikael Skurnik; Juliana Pfrimer Falcão; Hiroshi Fukushima; Holger C. Scholz; Michael B. Prentice; Brendan W. Wren; Julian Parkhill; Elisabeth Carniel
Significance Our past understanding of pathogen evolution has been fragmented because of tendencies to study human clinical isolates. To understand the evolutionary trends of pathogenic bacteria though, we need the context of their nonpathogenic relatives. Our unique and detailed dataset allows description of the parallel evolution of two key human pathogens: the causative agents of plague and Yersinia diarrhea. The analysis reveals an emerging pattern where few virulence-related functions are found in all pathogenic lineages, representing key “foothold” moments that mark the emergence of these pathogens. Functional gene loss and metabolic streamlining are equally complementing the evolution of Yersinia across the pathogenic spectrum. The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Gemma C. Langridge; Maria Fookes; Thomas Richard Connor; Theresa Feltwell; Nicholas A. Feasey; Bryony Parsons; Helena M. B. Seth-Smith; Lars Barquist; Anna Stedman; Tom J. Humphrey; Paul Wigley; Sarah E. Peters; Duncan J. Maskell; Jukka Corander; José A. Chabalgoity; Paul A. Barrow; Julian Parkhill; Gordon Dougan; Nicholas R. Thomson
Significance Common features have been observed in the genome sequences of bacterial pathogens that infect few hosts. These “host adaptations” include the acquisition of pathogenicity islands of multiple genes involved in disease, losses of whole genes, and even single mutations that affect gene function. Within Salmonella enterica is a natural model system of four pathogens that are each other’s closest relatives, including a host-generalist, two host-specialists, and one with strong host associations. With whole-genome sequences, we aimed to improve our understanding of the number, nature, and order of these host adaptation events, shedding light on how human and animal pathogens arose in the past, and potentially allowing us to predict how emerging pathogens will evolve in the future. Many bacterial pathogens are specialized, infecting one or few hosts, and this is often associated with more acute disease presentation. Specific genomes show markers of this specialization, which often reflect a balance between gene acquisition and functional gene loss. Within Salmonella enterica subspecies enterica, a single lineage exists that includes human and animal pathogens adapted to cause infection in different hosts, including S. enterica serovar Enteritidis (multiple hosts), S. Gallinarum (birds), and S. Dublin (cattle). This provides an excellent evolutionary context in which differences between these pathogen genomes can be related to host range. Genome sequences were obtained from ∼60 isolates selected to represent the known diversity of this lineage. Examination and comparison of the clades within the phylogeny of this lineage revealed signs of host restriction as well as evolutionary events that mark a path to host generalism. We have identified the nature and order of events for both evolutionary trajectories. The impact of functional gene loss was predicted based upon position within metabolic pathways and confirmed with phenotyping assays. The structure of S. Enteritidis is more complex than previously known, as a second clade of S. Enteritidis was revealed that is distinct from those commonly seen to cause disease in humans or animals, and that is more closely related to S. Gallinarum. Isolates from this second clade were tested in a chick model of infection and exhibited a reduced colonization phenotype, which we postulate represents an intermediate stage in pathogen–host adaptation.
Journal of Clinical Microbiology | 2010
Laura Betancor; M. Pereira; Arací Martínez; G. Giossa; Maria Fookes; K. Flores; P. Barrios; V. Repiso; Rafael Vignoli; N. Cordeiro; Gabriela Algorta; Nicholas R. Thomson; Duncan J. Maskell; Felipe Schelotto; José A. Chabalgoity
ABSTRACT Salmonella enterica serovar Enteritidis (S. Enteritidis) is frequently associated with food-borne disease worldwide. Poultry-derived products are a major source. An epidemic of human infection with S. Enteritidis occurred in Uruguay, and to evaluate the extent of poultry contamination, we conducted a nationwide survey over 2 years that included the analysis of sera from 5,751 birds and 12,400 eggs. Serological evidence of infection with Salmonella group O:9 was found in 24.4% of the birds. All positive sera were retested with a gm flagellum-based enzyme-linked immunosorbent assay, and based on these results, the national prevalence of S. Enteritidis infection was estimated to be 6.3%. Salmonellae were recovered from 58 of 620 pools made up of 20 eggs each, demonstrating a prevalence of at least 1 in every 214 eggs. Surprisingly, the majority of the isolates were not S. Enteritidis. Thirty-nine isolates were typed as S. Derby, 9 as S. Gallinarum, 8 as S. Enteritidis, and 2 as S. Panama. Despite the highest prevalence in eggs, S. Derby was not isolated from humans in the period of analysis, suggesting a low capacity to infect humans. Microarray-based comparative genomic hybridization analysis of S. Derby and S. Enteritidis revealed more than 350 genetic differences. S. Derby lacked pathogenicity islands 13 and 14, the fimbrial lpf operon, and other regions encoding metabolic functions. Several of these regions are present not only in serovar Enteritidis but also in all sequenced strains of S. Typhimurium, suggesting that these regions might be related to the capacity of Salmonella to cause food-borne disease.
Infection and Immunity | 2005
Muna F. Anjum; Chris Marooney; Maria Fookes; Stephen Baker; Gordon Dougan; Al Ivens; Martin J. Woodward
ABSTRACT We have performed microarray hybridization studies on 40 clinical isolates from 12 common serovars within Salmonella enterica subspecies I to identify the conserved chromosomal gene pool. We were able to separate the core invariant portion of the genome by a novel mathematical approach using a decision tree based on genes ranked by increasing variance. All genes within the core component were confirmed using available sequence and microarray information for S. enterica subspecies I strains. The majority of genes within the core component had conserved homologues in Escherichia coli K-12 strain MG1655. However, many genes present in the conserved set which were absent or highly divergent in K-12 had close homologues in pathogenic bacteria such as Shigella flexneri and Pseudomonas aeruginosa. Genes within previously established virulence determinants such as SPI1 to SPI5 were conserved. In addition several genes within SPI6, all of SPI9, and three fimbrial operons (fim, bcf, and stb) were conserved within all S. enterica strains included in this study. Although many phage and insertion sequence elements were missing from the core component, approximately half the pseudogenes present in S. enterica serovar Typhi were conserved. Furthermore, approximately half the genes conserved in the core set encoded hypothetical proteins. Separation of the core and variant gene sets within S.enterica subspecies I has offered fundamental biological insight into the genetic basis of phenotypic similarity and diversity across S. enterica subspecies I and shown how the core genome of these pathogens differs from the closely related E. coli K-12 laboratory strain.