Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ala Lisok is active.

Publication


Featured researches published by Ala Lisok.


Oncogene | 2008

Oncogenic role of DDX3 in breast cancer biogenesis

M Botlagunta; Farhad Vesuna; Yelena Mironchik; A Raman; Ala Lisok; Paul T. Winnard; S Mukadam; P. J. van Diest; J H Chen; P Farabaugh; Arvind H. Patel; Venu Raman

Benzo[a]pyrene diol epoxide (BPDE), the active metabolite of benzo[a]pyrene present in tobacco smoke, is a major cancer-causing compound. To evaluate the effects of BPDE on human breast epithelial cells, we exposed an immortalized human breast cell line, MCF 10A, to BPDE and characterized the gene expression pattern. Of the differential genes expressed, we found consistent activation of DDX3, a member of the DEAD box RNA helicase family. Overexpression of DDX3 in MCF 10A cells induced an epithelial-mesenchymal-like transformation, exhibited increased motility and invasive properties, and formed colonies in soft-agar assays. Besides the altered phenotype, MCF 10A-DDX3 cells repressed E-cadherin expression as demonstrated by both immunoblots and by E-cadherin promoter-reporter assays. In addition, an in vivo association of DDX3 and the E-cadherin promoter was demonstrated by chromatin immunoprecipitation assays. Collectively, these results demonstrate that the activation of DDX3 by BPDE, can promote growth, proliferation and neoplastic transformation of breast epithelial cells.


Oncogene | 2012

Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-α

Farhad Vesuna; Ala Lisok; B. Kimble; John Domek; Yoshinori Kato; P van der Groep; Dmitri Artemov; Jeanne Kowalski; Hetty E. Carraway; P. J. van Diest; Venu Raman

The role of estrogen receptor-α (ER) in breast cancer development, and as a primary clinical marker for breast cancer prognosis, has been well documented. In this study, we identified the oncogenic protein, TWIST1 (Twist), which is overexpressed in high-grade breast cancers, as a potential negative regulator of ER expression. Functional characterization of ER regulation by Twist was performed using Twist low (MCF-7, T-47D) and Twist high (Hs 578T, MDA-MB-231, MCF-7/Twist) expressing cell lines. All Twist high expressing cell lines exhibited low ER transcript and protein levels. By chromatin immunoprecipitation and promoter assays, we demonstrated that Twist could directly bind to E-boxes in the ER promoter and significantly downregulate ER promoter activity in vitro. Functionally, Twist overexpression caused estrogen-independent proliferation of breast cells, and promoted hormone resistance to the selective estrogen receptor modulator tamoxifen and selective estrogen receptor down-regulator fulvestrant. Importantly, this effect was reversible on downregulating Twist. In addition, orthotopic tumors generated in mice using MCF-7/Twist cells were resistant to tamoxifen. These tumors had high vascular volume and permeability surface area, as determined by magnetic resonance imaging (MRI). Mechanistically, Twist recruited DNA methyltransferase 3B (DNMT3B) to the ER promoter, leading to a significantly higher degree of ER promoter methylation compared with parental cells. Furthermore, we demonstrated by co-immunoprecipitation that Twist interacted with histone deacetylase 1 (HDAC1) at the ER promoter, causing histone deacetylation and chromatin condensation, further reducing ER transcript levels. Functional re-expression of ER was achieved using the demethylating agent, 5-azacytidine, and the HDAC inhibitor, valproic acid. Finally, an inverse relationship was observed between Twist and ER expression in human breast tumors. In summary, the regulation of ER by Twist could be an underlying mechanism for the loss of ER activity observed in breast tumors, and may contribute to the generation of hormone-resistant, ER-negative breast cancer.


Angewandte Chemie | 2015

Synthesis and Evaluation of GdIII‐Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate‐Specific Membrane Antigen

Sangeeta Ray Banerjee; Ethel J. Ngen; Matthew W. Rotz; Samata Kakkad; Ala Lisok; Richard Pracitto; Mrudula Pullambhatla; Zhengping Chen; Tariq Shah; Dmitri Artemov; Thomas J. Meade; Zaver M. Bhujwalla; Martin G. Pomper

Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight Gd(III) -based PSMA-targeted contrast agents containing one to three Gd(III)  chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging.


Oncotarget | 2016

A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors

Samit Chatterjee; Wojciech Lesniak; Matthew Gabrielson; Ala Lisok; Bryan Wharram; Polina Sysa-Shah; Babak Behnam Azad; Martin G. Pomper; Sridhar Nimmagadda

Antibodies targeting the PD-1/PD-L1 immune checkpoint lead to tumor regression and improved survival in several cancers. PD-L1 expression in tumors may be predictive of response to checkpoint blockade therapy. Because tissue samples might not always be available to guide therapy, we developed and evaluated a humanized antibody for non-invasive imaging of PD-L1 expression in tumors. Radiolabeled [111In]PD-L1-mAb and near-infrared dye conjugated NIR-PD-L1-mAb imaging agents were developed using the mouse and human cross-reactive PD-L1 antibody MPDL3280A. We tested specificity of [111In]PD-L1-mAb and NIR-PD-L1-mAb in cell lines and in tumors with varying levels of PD-L1 expression. We performed SPECT/CT imaging, biodistribution and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-PDL1) and in controls (CHO). Results were confirmed in triple negative breast cancer (TNBC) (MDAMB231 and SUM149) and non-small cell lung cancer (NSCLC) (H2444 and H1155) xenografts with varying levels of PD-L1 expression. There was specific binding of [111In]PD-L1-mAb and NIR-PD-L1-mAb to tumor cells in vitro, correlating with PD-L1 expression levels. In mice bearing subcutaneous and orthotopic tumors, there was specific and persistent high accumulation of signal intensity in PD-L1 positive tumors (CHO-PDL1, MDAMB231, H2444) but not in controls. These results demonstrate that [111In]PD-L1-mAb and NIR-PD-L1-mAb can detect graded levels of PD-L1 expression in human tumor xenografts in vivo. As a humanized antibody, these findings suggest clinical translation of radiolabeled versions of MPDL3280A for imaging. Specificity of NIR-PD-L1-mAb indicates the potential for optical imaging of PD-L1 expression in tumors in relevant pre-clinical as well as clinical settings.


Bioconjugate Chemistry | 2016

PD-L1 Detection in Tumors Using [64Cu]Atezolizumab with PET

Wojciech Lesniak; Samit Chatterjee; Matthew Gabrielson; Ala Lisok; Bryan Wharram; Martin G. Pomper; Sridhar Nimmagadda

The programmed death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pair is a major immune checkpoint pathway exploited by cancer cells to develop and maintain immune tolerance. With recent approvals of anti-PD-1 and anti-PD-L1 therapeutic antibodies, there is an urgent need for noninvasive detection methods to quantify dynamic PD-L1 expression in tumors and to evaluate the tumor response to immune modulation therapies. To address this need, we assessed [(64)Cu]atezolizumab for the detection of PD-L1 expression in tumors. Atezolizumab (MPDL3208A) is a humanized, human and mouse cross-reactive, therapeutic PD-L1 antibody that is being investigated in several cancers. Atezolizumab was conjugated with DOTAGA and radiolabeled with copper-64. The resulting [(64)Cu]atezolizumab was assessed for in vitro and in vivo specificity in multiple cell lines and tumors of variable PD-L1 expression. We performed PET-CT imaging, biodistribution, and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-hPD-L1) and in controls (CHO). Specificity of [(64)Cu]atezolizumab was further confirmed in orthotopic tumor models of human breast cancer (MDAMB231 and SUM149) and in a syngeneic mouse mammary carcinoma model (4T1). We observed specific binding of [(64)Cu]atezolizumab to tumor cells in vitro, correlating with PD-L1 expression levels. Specific accumulation of [(64)Cu]atezolizumab was also observed in tumors with high PD-L1 expression (CHO-hPD-L1 and MDAMB231) compared to tumors with low PD-L1 expression (CHO, SUM149). Collectively, these studies demonstrate the feasibility of using [(64)Cu]atezolizumab for the detection of PD-L1 expression in different tumor types.


Bioconjugate Chemistry | 2014

Heterobivalent agents targeting PSMA and integrin-αvβ3.

Hassan Shallal; Il Minn; Sangeeta Ray Banerjee; Ala Lisok; Ronnie C. Mease; Martin G. Pomper

Differential expression of surface proteins on normal vs malignant cells provides the rationale for the development of receptor-, antigen-, and transporter-based, cancer-selective imaging and therapeutic agents. However, tumors are heterogeneous, and do not always express what can be considered reliable, tumor-selective markers. That suggests development of more flexible targeting platforms that incorporate multiple moieties enabling concurrent targeting to a variety of putative markers. We report the synthesis, biochemical, in vitro, and preliminary in vivo evaluation of a new heterobivalent (HtBv) imaging agent targeting both the prostate-specific membrane antigen (PSMA) and integrin-αvβ3 surface markers, each of which can be overexpressed in certain tumor epithelium and/or neovasculature. The HtBv agent was functionalized with either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or the commercially available IRDye800CW. DOTA-conjugated HtBv probe 9 bound to PSMA or αvβ3 with affinities similar to those of monovalent (Mnv) compounds designed to bind to their targets independently. In situ energy minimization experiments support a model describing the conformations adapted by 9 that enable it to bind both targets. IRDye800-conjugated HtBv probe 10 demonstrated target-specific binding to either PSMA or integrin-αvβ3 overexpressing xenografts. HtBv agents 9 and 10 may enable dual-targeted imaging of malignant cells and tissues in an effort to address heterogeneity that confounds many cancer-targeted imaging agents.


Nuclear Medicine and Biology | 2014

Bridged cyclams as imaging agents for chemokine receptor 4 (CXCR4)

Lauren E. Woodard; Ravindra De Silva; Babak Behnam Azad; Ala Lisok; Mrudula Pullambhatla; Wojciech G. Lesniak; Ronnie C. Mease; Martin G. Pomper; Sridhar Nimmagadda

Over-expression of chemokine receptor 4 (CXCR4) is present in a majority of cancers, has been linked to an aggressive phenotype, and may indicate the metastatic potential of primary tumor. Several CXCR4 targeted therapeutics are in clinical trials and the development of the corresponding imaging agents is an area of active interest. Previously, (64)Cu-labeled imaging agents for CXCR4 have provided clear images of CXCR4-bearing tissues in relevant experimental models but demonstrated fast washout from tissues harboring receptor. Addition of stabilizing bridges is known to provide more robust chelator-Cu(II) complexes. In addition, bridged cyclam-based CXCR4 binding agents demonstrated increased receptor residence times relative to existing agents. Based on that knowledge we synthesized several bridged cyclam analogs of AMD3465, a monocyclam-based CXCR4 imaging agent, to increase the retention time of the tracer bound to the receptor to allow for protracted imaging and improved target-to-non-target ratios. Specific accumulation of two radiolabeled, cross-bridged analogs ([(64)Cu] RAD1-24 and [(64)Cu]RAD1-52) was observed in U87-stb-CXCR4 tumors in both PET/CT imaging and biodistribution studies. At 90min post-injection of radiotracer, tumor-to-muscle and tumor-to-blood ratios reached 106.05±17.19 and 28.08±4.78, respectively, for cross-bridged pyrimidine analog [(64)Cu]RAD1-52. Receptor blockade performed in vivo denoted target binding specificity. The biodistribution and PET/CT imaging studies with the radiolabeled bridged cyclams demonstrated longer tumor retention and comparable uptake to [(64)Cu]AMD3465, though [(64)Cu]AMD3465 demonstrated superior overall pharmacokinetics.


Journal of Medicinal Chemistry | 2016

[18F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA)

Xing Yang; Ronnie C. Mease; Mrudula Pullambhatla; Ala Lisok; Ying Chen; Catherine A. Foss; Yuchuan Wang; Hassan Shallal; Hannah Edelman; Adam T. Hoye; Giorgio Attardo; Sridhar Nimmagadda; Martin G. Pomper

Radiolabeled urea-based low-molecular weight inhibitors of the prostate-specific membrane antigen (PSMA) are under intense investigation as imaging and therapeutic agents for prostate and other cancers. In an effort to provide agents with less nontarget organ uptake than the ureas, we synthesized four (18)F-labeled inhibitors of PSMA based on carbamate scaffolds. 4-Bromo-2-[(18)F]fluorobenzoyllysineoxypentanedioic acid (OPA) carbamate [(18)F]23 and 4-iodo-2-[(18)F]fluorobenzoyllysine OPA carbamate [(18)F]24 in particular exhibited high target-selective uptake in PSMA+ PC3 PIP tumor xenografts, with tumor-to-kidney ratios of >1 by 4 h postinjection, an important benchmark. Because of its high tumor uptake (90% injected dose per gram of tissue at 2 h postinjection) and high tumor-to-organ ratios, [(18)F]23 is promising for clinical translation. Prolonged tumor-specific uptake demonstrated by [(18)F]24, which did not reach equilibrium during the 4 h study period, suggests carbamates as alternative scaffolds for mitigating dose to nontarget tissues.


Bioconjugate Chemistry | 2016

Preclinical Comparative Study of 68Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA

Sangeeta Ray Banerjee; Zhengping Chen; Mrudula Pullambhatla; Ala Lisok; Jian Chen; Ronnie C. Mease; Martin G. Pomper

(68)Ga-labeled, low-molecular-weight imaging agents that target the prostate-specific membrane antigen (PSMA) are increasingly used clinically to detect prostate and other cancers with positron emission tomography (PET). The goal of this study was to compare the pharmacokinetics of three PSMA-targeted radiotracers: (68)Ga-1, using DOTA-monoamide as the chelating agent; (68)Ga-2, containing the macrocyclic chelating agent p-SCN-Bn-NOTA; and (68)Ga-DKFZ-PSMA-11, currently in clinical trials, which uses the acyclic chelating agent, HBED-CC. The PSMA-targeting scaffold for all three agents utilized a similar Glu-urea-Lys-linker construct. Each radiotracer enabled visualization of PSMA+ PC3 PIP tumor, kidney, and urinary bladder as early as 15 min post-injection using small animal PET/computed tomography (PET/CT). (68)Ga-2 demonstrated the fastest rate of clearance from all tissues in this series and displayed higher uptake in PSMA+ PC3 PIP tumor compared to (68)Ga-1 at 1 h post-injection. There was no significant difference in PSMA+ PC3 PIP tumor uptake for the three agents at 2 and 3 h post-injection. (68)Ga-DKFZ-PSMA-11 demonstrated the highest uptake and retention in normal tissues, including kidney, blood, spleen, and salivary glands and PSMA-negative PC3 flu tumors up to 3 h post-injection. In this preclinical evaluation (68)Ga-2 had the most advantageous characteristics for PSMA-targeted PET imaging.


Oncotarget | 2016

A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts

Babak Behnam Azad; Samit Chatterjee; Wojciech Lesniak; Ala Lisok; Mrudula Pullambhatla; Zaver M. Bhujwalla; Martin G. Pomper; Sridhar Nimmagadda

For physiologically important cancer therapeutic targets, use of non-invasive imaging for therapeutic guidance and monitoring may improve outcomes for treated patients. The CXC chemokine receptor 4 (CXCR4) is overexpressed in many cancers including non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). CXCR4 overexpression contributes to tumor growth, progression and metastasis. There are several CXCR4-targeted therapeutic agents currently in clinical trials. Since CXCR4 is also crucial for normal biological functions, its prolonged inhibition could lead to unwanted toxicities. While CXCR4-targeted imaging agents and inhibitors have been reported and evaluated independently, there are currently no studies demonstrating CXCR4-targeted imaging for therapeutic guidance. Monoclonal antibodies (mAbs) are commonly used for cancer therapy and imaging. Here, an 89Zr-labeled human CXCR4-mAb (89Zr-CXCR4-mAb) was evaluated for detection of CXCR4 expression with positron emission tomography (PET) while its native unmodified analogue was evaluated for therapy in relevant models of NSCLC and TNBC. In vitro and in vivo evaluation of 89Zr-CXCR4-mAb showed enhanced uptake in NSCLC xenografts with a high expression of CXCR4. It also had the ability to detect lymph node metastases in an experimental model of metastatic TNBC. Treatment of high and low CXCR4 expressing NSCLC and TNBC xenografts with CXCR4-mAb demonstrated a therapeutic response correlating with the expression of CXCR4. Considering the key role of CXCR4 in normal biological functions, our results suggest that combination of 89Zr-CXCR4-mAb-PET with non-radiolabeled mAb therapy may provide a precision medicine approach for selecting patients with tumors that are likely to be responsive to this treatment.

Collaboration


Dive into the Ala Lisok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Wharram

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Chen

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge