Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samit Chatterjee is active.

Publication


Featured researches published by Samit Chatterjee.


Advances in Cancer Research | 2014

The intricate role of CXCR4 in cancer.

Samit Chatterjee; Babak Behnam Azad; Sridhar Nimmagadda

Chemokines mediate numerous physiological and pathological processes related primarily to cell homing and migration. The chemokine CXCL12, also known as stromal cell-derived factor-1, binds the G-protein-coupled receptor CXCR4, which, through multiple divergent pathways, leads to chemotaxis, enhanced intracellular calcium, cell adhesion, survival, proliferation, and gene transcription. CXCR4, initially discovered for its involvement in HIV entry and leukocytes trafficking, is overexpressed in more than 23 human cancers. Cancer cell CXCR4 overexpression contributes to tumor growth, invasion, angiogenesis, metastasis, relapse, and therapeutic resistance. CXCR4 antagonism has been shown to disrupt tumor-stromal interactions, sensitize cancer cells to cytotoxic drugs, and reduce tumor growth and metastatic burden. As such, CXCR4 is a target not only for therapeutic intervention but also for noninvasive monitoring of disease progression and therapeutic guidance. This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of CXCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CXCR4 expression.


Journal of Biological Chemistry | 2013

Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity

Yogesh Singh; Vandana Kaul; Alka Mehra; Samit Chatterjee; Sultan Tousif; Ved Prakash Dwivedi; Mrutyunjay Suar; Luc Van Kaer; William R. Bishai; Gobardhan Das

Background: Modulation of host miRNAs coincides with increased pathogenicity in various infectious diseases. Results: miR-99b is up-regulated in M. tuberculosis-infected dendritic cells, which inhibits production of proinflammatory cytokines. Conclusion: Our findings unfold a novel immune evasion strategy of M. tuberculosis by modulating miRNAs. Significance: Our study opens up the possibility to design vaccines and immunotherapies for tuberculosis by targeting specific miRNAs. Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.


PLOS Pathogens | 2011

Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner.

Samit Chatterjee; Ved Prakash Dwivedi; Yogesh Singh; Imran Siddiqui; Pawan Sharma; Luc Van Kaer; Debprasad Chattopadhyay; Gobardhan Das

Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2-/-) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.


Oncotarget | 2016

A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors

Samit Chatterjee; Wojciech Lesniak; Matthew Gabrielson; Ala Lisok; Bryan Wharram; Polina Sysa-Shah; Babak Behnam Azad; Martin G. Pomper; Sridhar Nimmagadda

Antibodies targeting the PD-1/PD-L1 immune checkpoint lead to tumor regression and improved survival in several cancers. PD-L1 expression in tumors may be predictive of response to checkpoint blockade therapy. Because tissue samples might not always be available to guide therapy, we developed and evaluated a humanized antibody for non-invasive imaging of PD-L1 expression in tumors. Radiolabeled [111In]PD-L1-mAb and near-infrared dye conjugated NIR-PD-L1-mAb imaging agents were developed using the mouse and human cross-reactive PD-L1 antibody MPDL3280A. We tested specificity of [111In]PD-L1-mAb and NIR-PD-L1-mAb in cell lines and in tumors with varying levels of PD-L1 expression. We performed SPECT/CT imaging, biodistribution and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-PDL1) and in controls (CHO). Results were confirmed in triple negative breast cancer (TNBC) (MDAMB231 and SUM149) and non-small cell lung cancer (NSCLC) (H2444 and H1155) xenografts with varying levels of PD-L1 expression. There was specific binding of [111In]PD-L1-mAb and NIR-PD-L1-mAb to tumor cells in vitro, correlating with PD-L1 expression levels. In mice bearing subcutaneous and orthotopic tumors, there was specific and persistent high accumulation of signal intensity in PD-L1 positive tumors (CHO-PDL1, MDAMB231, H2444) but not in controls. These results demonstrate that [111In]PD-L1-mAb and NIR-PD-L1-mAb can detect graded levels of PD-L1 expression in human tumor xenografts in vivo. As a humanized antibody, these findings suggest clinical translation of radiolabeled versions of MPDL3280A for imaging. Specificity of NIR-PD-L1-mAb indicates the potential for optical imaging of PD-L1 expression in tumors in relevant pre-clinical as well as clinical settings.


Journal of Biological Chemistry | 2012

Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1β production in dendritic cells

Ved Prakash Dwivedi; Debapriya Bhattacharya; Samit Chatterjee; Durbaka Vijay Raghva Prasad; Debprasad Chattopadhyay; Luc Van Kaer; William R. Bishai; Gobardhan Das

Background: Mycobacterium tuberculosis survives within the host by modulating host immune responses. Results: RD-1/ESAT-6 from M. tuberculosis induces IL-1β in dendritic cells to direct Th2 differentiation, which facilitates disease progression by inhibiting host protective Th1 responses. Conclusion: Cytokines produced by M. tuberculosis-infected cells play a role in promoting Th2 responses to subvert host immunity. Significance: These findings contribute to understanding the immune evasion mechanisms of M. tuberculosis. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), resides and replicates within phagocytes and persists in susceptible hosts by modulating protective innate immune responses. Furthermore, M. tuberculosis promotes T helper 2 (Th2) immune responses by altering the balance of T cell polarizing cytokines in infected cells. However, cytokines that regulate Th2 cell differentiation during TB infection remain unknown. Here we show that IL-1β, produced by phagocytes infected by virulent M. tuberculosis strain H37Rv, directs Th2 cell differentiation. In sharp contrast, the vaccine strain bacille Calmette-Guérin as well as RD-1 and ESAT-6 mutants of H37Rv failed to induce IL-1β and promote Th2 cell differentiation. Furthermore, ESAT-6 induced IL-1β production in dendritic cells (DCs), and CD4+ T cells co-cultured with infected DCs differentiated into Th2 cells. Taken together, our findings indicate that IL-1β induced by RD-1/ESAT-6 plays an important role in the differentiation of Th2 cells, which in turn facilitates progression of TB by inhibiting host protective Th1 responses.


Bioconjugate Chemistry | 2016

PD-L1 Detection in Tumors Using [64Cu]Atezolizumab with PET

Wojciech Lesniak; Samit Chatterjee; Matthew Gabrielson; Ala Lisok; Bryan Wharram; Martin G. Pomper; Sridhar Nimmagadda

The programmed death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pair is a major immune checkpoint pathway exploited by cancer cells to develop and maintain immune tolerance. With recent approvals of anti-PD-1 and anti-PD-L1 therapeutic antibodies, there is an urgent need for noninvasive detection methods to quantify dynamic PD-L1 expression in tumors and to evaluate the tumor response to immune modulation therapies. To address this need, we assessed [(64)Cu]atezolizumab for the detection of PD-L1 expression in tumors. Atezolizumab (MPDL3208A) is a humanized, human and mouse cross-reactive, therapeutic PD-L1 antibody that is being investigated in several cancers. Atezolizumab was conjugated with DOTAGA and radiolabeled with copper-64. The resulting [(64)Cu]atezolizumab was assessed for in vitro and in vivo specificity in multiple cell lines and tumors of variable PD-L1 expression. We performed PET-CT imaging, biodistribution, and blocking studies in NSG mice bearing tumors with constitutive PD-L1 expression (CHO-hPD-L1) and in controls (CHO). Specificity of [(64)Cu]atezolizumab was further confirmed in orthotopic tumor models of human breast cancer (MDAMB231 and SUM149) and in a syngeneic mouse mammary carcinoma model (4T1). We observed specific binding of [(64)Cu]atezolizumab to tumor cells in vitro, correlating with PD-L1 expression levels. Specific accumulation of [(64)Cu]atezolizumab was also observed in tumors with high PD-L1 expression (CHO-hPD-L1 and MDAMB231) compared to tumors with low PD-L1 expression (CHO, SUM149). Collectively, these studies demonstrate the feasibility of using [(64)Cu]atezolizumab for the detection of PD-L1 expression in different tumor types.


Modern Pathology | 2017

Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: implications for assessment by small biopsy

Thomas J. Gniadek; Qing Kay Li; Ellen Tully; Samit Chatterjee; Sridhar Nimmagadda; Edward Gabrielson

Predicting response to checkpoint blockade therapy for lung cancer has largely focused on measuring programmed death-ligand 1 (PD-L1) expression on tumor cells. PD-L1 expression is geographically heterogeneous within many tumors, however, and we questioned whether small tissue samples, such as biopsies, might be sufficiently representative of PD-L1 expression for evaluating this marker in lung cancer tumors. To evaluate the extent of variability of PD-L1 expression in small tissue samples, and how that variability affects accuracy of overall assessment of PD-L1 in lung cancer, we scored immunohistochemical staining for PD-L1 in tissue microarray cores from a series of 79 squamous cell lung cancers and 71 pulmonary adenocarcinomas. Our study found substantial inconsistencies for the percentages of cells staining positive for PD-L1 among different tissue microarray cores in many cases of both adenocarcinoma and squamous cell carcinoma. This variable scoring was seen at both high levels and low levels of PD-L1 expression, and by further evaluation of cases with discordant results on full-face sections to assess geographic distribution of staining, we found that discordant results among different tissue microarray cores reflected geographic variation of PD-L1 expression in those tumors. Moreover, we found that as a result of heterogeneous expression, the sensitivity of a single small tissue sample can be as low as 85% for detecting PD-L1 expression at scoring thresholds commonly used in clinical practice. Based on these studies, we conclude that many cases of lung cancer could be inaccurately or variably scored for PD-L1 expression with a single biopsy sample. Accordingly, lung cancer patients can be inconsistently classified for PD-L1 expression status, particularly when a threshold for the percentage of positive cells is used to determine eligibility for checkpoint blockade therapy.


Oncotarget | 2016

A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts

Babak Behnam Azad; Samit Chatterjee; Wojciech Lesniak; Ala Lisok; Mrudula Pullambhatla; Zaver M. Bhujwalla; Martin G. Pomper; Sridhar Nimmagadda

For physiologically important cancer therapeutic targets, use of non-invasive imaging for therapeutic guidance and monitoring may improve outcomes for treated patients. The CXC chemokine receptor 4 (CXCR4) is overexpressed in many cancers including non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). CXCR4 overexpression contributes to tumor growth, progression and metastasis. There are several CXCR4-targeted therapeutic agents currently in clinical trials. Since CXCR4 is also crucial for normal biological functions, its prolonged inhibition could lead to unwanted toxicities. While CXCR4-targeted imaging agents and inhibitors have been reported and evaluated independently, there are currently no studies demonstrating CXCR4-targeted imaging for therapeutic guidance. Monoclonal antibodies (mAbs) are commonly used for cancer therapy and imaging. Here, an 89Zr-labeled human CXCR4-mAb (89Zr-CXCR4-mAb) was evaluated for detection of CXCR4 expression with positron emission tomography (PET) while its native unmodified analogue was evaluated for therapy in relevant models of NSCLC and TNBC. In vitro and in vivo evaluation of 89Zr-CXCR4-mAb showed enhanced uptake in NSCLC xenografts with a high expression of CXCR4. It also had the ability to detect lymph node metastases in an experimental model of metastatic TNBC. Treatment of high and low CXCR4 expressing NSCLC and TNBC xenografts with CXCR4-mAb demonstrated a therapeutic response correlating with the expression of CXCR4. Considering the key role of CXCR4 in normal biological functions, our results suggest that combination of 89Zr-CXCR4-mAb-PET with non-radiolabeled mAb therapy may provide a precision medicine approach for selecting patients with tumors that are likely to be responsive to this treatment.


Journal of Biological Chemistry | 2012

CD4+ T Cell-derived Novel Peptide Thp5 Induces Interleukin-4 Production in CD4+ T Cells to Direct T Helper 2 Cell Differentiation

Mohd Moin Khan; Samit Chatterjee; Ved Prakash Dwivedi; Nishant Kumar Pandey; Yogesh Singh; Sultan Tousif; Neel Sarovar Bhavesh; Luc Van Kaer; Jyoti Das; Gobardhan Das

Background: CD4+ T cells produce IL-4 that drives Th2 cell differentiation. Early production of IL-4 in naïve T cells leads to Th2 cell differentiation. Results: Thp5, a novel peptide, regulates IL-4 production in early activated CD4+ T cells. Conclusion: Early activated CD4+ T cells produce Thp5, which plays a critical role in the differentiation of Th2 cells. Significance: Thp5 acts as an important determinant of Th2 cell differentiation during early T cell activation. The differentiation of naïve CD4+ T cells into T helper 2 (Th2) cells requires production of the cytokine IL-4 in the local microenvironment. It is evident that naïve/quiescently activated CD4+ T cells produce the IL-4 that drives Th2 cell differentiation. Because early production of IL-4 in naïve T cells leads to preferential Th2 cell differentiation, this process needs to be tightly regulated so as to avoid catastrophic and misdirected Th2 cell differentiation. Here, we show that Thp5, a novel peptide with structural similarity to vasoactive intestinal peptide, regulates production of early IL-4 in newly activated CD4+ T cells. Induction of IL-4 in CD4+ T cells by Thp5 is independent of the transcription factor STAT6 but dependent on ERK1/2 signaling. Furthermore, cytokines (IL-12 and TGF-β) that promote the differentiation of Th1 or Th17 cells inhibit Thp5 induction, thus suppressing Th2 cell differentiation. We further showed that Thp5 enhances Th2 responses and exacerbates allergic airway inflammation in mice. Taken together, our findings reveal that early activated CD4+ T cells produce Thp5, which plays a critical role as a molecular switch in the differentiation of Th cells, biasing the response toward the Th2 cell phenotype.


Journal of Photochemistry and Photobiology B-biology | 2017

A PSMA-targeted theranostic agent for photodynamic therapy

Ying Chen; Samit Chatterjee; Ala Lisok; Il Minn; Mrudula Pullambhatla; Bryan Wharram; Yuchuan Wang; Jiefu Jin; Zaver M. Bhujwalla; Sridhar Nimmagadda; Ronnie C. Mease; Martin G. Pomper

Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA+ PC3-PIP and PSMA- PC3-flu cells. In vivo PDT in mice bearing PSMA+ PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA+ PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression.

Collaboration


Dive into the Samit Chatterjee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ala Lisok

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Wharram

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Ved Prakash Dwivedi

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yogesh Singh

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge