Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alain Robichon is active.

Publication


Featured researches published by Alain Robichon.


PLOS ONE | 2013

Environment Exploration and Colonization Behavior of the Pea Aphid Associated with the Expression of the foraging Gene

Sophie Tares; Laury Arthaud; Marcel Amichot; Alain Robichon

Aphids respond to specific environmental cues by producing alternative morphs, a phenomenon called polyphenism, but also by modulating their individual behavior even within the same morph. This complex plasticity allows a rapid adaptation of individuals to fluctuating environmental conditions, but the underlying genetic and molecular mechanisms remain largely unknown. The foraging gene is known to be associated with behavior in various species and has been shown to mediate the behavioral shift induced by environmental changes in some insects. In this study, we investigated the function of this gene in the clonal forms of the pea aphid Acyrthosiphon pisum by identifying and cloning cDNA variants, as well as analyzing their expression levels in developmental morphs and behavioral variants. Our results indicate that the expression of foraging changes at key steps of the aphid development. This gene is also highly expressed in sedentary wingless adult morphs reared under crowded conditions, probably just before they start walking and foraging. The cGMP-dependent protein kinase (PKG) enzyme activity measured in the behavioral variants correlates with the level of foraging expression. Altogether, our results suggest that foraging could act to promote the shift from a sedentary to an exploratory behavior, being thus involved in the behavioral plasticity of the pea aphid.


PLOS ONE | 2008

Continued neurogenesis in adult Drosophila as a mechanism for recruiting environmental cue-dependent variants.

Selim Ben Rokia-Mille; Sylvette Tinette; Gilbert Engler; Laury Arthaud; Sophie Tares; Alain Robichon

Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment.


PLOS ONE | 2014

Environmentally selected aphid variants in clonality context display differential patterns of methylation in the genome.

Claude Pasquier; Mathilde Clément; Aviv Dombrovsky; Stéphanie Penaud; Martine Da Rocha; Corinne Rancurel; Neil Ledger; Maria Capovilla; Alain Robichon

Heritability of acquired phenotypic traits is an adaptive evolutionary process that appears more complex than the basic allele selection guided by environmental pressure. In insects, the trans-generational transmission of epigenetic marks in clonal and/or sexual species is poorly documented. Aphids were used as a model to explore this feature because their asexual phase generates a stochastic and/or environment-oriented repertoire of variants. The a priori unchanged genome in clonal individuals prompts us to hypothesize whether covalent methyl DNA marks might be associated to the phenotypic variability and fitness selection. The full differential transcriptome between two environmentally selected clonal variants that originated from the same founder mother was mapped on the entire genomic scaffolds, in parallel with the methyl cytosine distribution. Data suggest that the assortments of heavily methylated DNA sites are distinct in these two clonal phenotypes. This might constitute an epigenetic mechanism that confers the robust adaptation of insect species to various environments involving clonal reproduction.


Journal of Molecular Evolution | 2017

Transcriptome Profiling of Neurosensory Perception Genes in Wing Tissue of Two Evolutionary Distant Insect Orders: Diptera (Drosophila melanogaster) and Hemiptera (Acyrthosiphon pisum)

Sandra Agnel; Martine Da Rocha; Alain Robichon

The neurogenesis and neuronal functions in insect wing have been understudied mainly due to technical hindrances that have prevented electrophysiology studies for decades. The reason is that the nano-architecture of the wing chemosensory bristles hampers the receptors accessibility of odorants/tastants to receptors in fixed setup, whereas in nature, the wing flapping mixes these molecules in bristle lymph. In this report, we analyzed the transcriptome of the wing tissue of two species phylogenetically strongly divergent: Drosophila melanogaster a generic model for diptera order (complete metamorphosis) and the aphid acyrthosiphon pisum, representative of hemiptera order (incomplete metamorphosis) for which a conditional winged/wingless polyphenism is under control of population density and resources. The transcriptome shows that extensive gene networks involved in chemosensory perception are active in adult wing for both species. Surprisingly, the specific transcripts of genes that are commonly found in eye were present in Drosophila wing but not in aphid. The analysis reveals that in the aphid conditional wing, expressed genes show strong similarities with those in the gut epithelia. This suggests that the epithelial cell layer between the cuticle sheets is persistent at least in young aphid adult, whereas it disappears after emergence in Drosophila. Despite marked differences between the two transcriptomes, the results highlight the probable universalism of wing chemosensory function in the holometabolous and hemimetabolous orders of winged insects.


G3: Genes, Genomes, Genetics | 2017

The Mapping of Predicted Triplex DNA:RNA in the Drosophila Genome Reveals a Prominent Location in Development- and Morphogenesis-Related Genes

Claude Pasquier; Sandra Agnel; Alain Robichon

Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand. A nucleic acid triplex occurs according to Hoogsteen rules that predict the stability and affinity of the third strand bound to the Watson–Crick duplex. The “triplex-forming oligonucleotide” (TFO) can be a short sequence of RNA that binds to the major groove of the targeted duplex only when this duplex presents a sequence of purine or pyrimidine bases in one of the DNA strands. Many nuclear proteins are known to bind triplex DNA or DNA:RNA, but their biological functions are unexplored. We identified sequences that are capable of engaging as the “triplex-forming oligonucleotide” in both the pre-lncRNA and pre-mRNA collections of Drosophila melanogaster. These motifs were matched against the Drosophila genome in order to identify putative sequences of triplex formation in intergenic regions, promoters, and introns/exons. Most of the identified TFOs appear to be located in the intronic region of the analyzed genes. Computational prediction of the most targeted genes by TFOs originating from pre-lncRNAs and pre-mRNAs revealed that they are restrictively associated with development- and morphogenesis-related gene networks. The refined analysis by Gene Ontology enrichment demonstrates that some individual TFOs present genome-wide scale matches that are located in numerous genes and regulatory sequences. The triplex DNA:RNA computational mapping at the genome-wide scale suggests broad interference in the regulatory process of the gene networks orchestrated by TFO RNAs acting in association simultaneously at multiple sites.


BMC Genomics | 2014

Adenine methylation may contribute to endosymbiont selection in a clonal aphid population

Victoria Reingold; Neta Luria; Alain Robichon; Aviv Dombrovsky

BackgroundThe pea aphid Acyrthosiphon pisum has two modes of reproduction: parthenogenetic during the spring and summer and sexual in autumn. This ability to alternate between reproductive modes and the emergence of clonal populations under favorable conditions make this organism an interesting model for genetic and epigenetic studies. The pea aphid hosts different types of endosymbiotic bacteria within bacteriocytes which help the aphids survive and adapt to new environmental conditions and habitats. The obligate endosymbiont Buchnera aphidicola has a drastically reduced and stable genome, whereas facultative endosymbionts such as Regiella insecticola have large and dynamic genomes due to phages, mobile elements and high levels of genetic recombination. In previous work, selection toward cold adaptation resulted in the appearance of parthenogenetic A. pisum individuals characterized by heavier weights and remarkable green pigmentation.ResultsSix adenine-methylated DNA fragments were isolated from genomic DNA (gDNA) extracted from the cold-induced green variant of A. pisum using deoxyadenosine methylase (Dam) by digesting the gDNA with the restriction enzymes DpnI and DpnII, which recognize the methylated and unmethylated GATC sites, respectively. The six resultant fragments did not match any sequence in the A. pisum or Buchnera genomes, implying that they came from facultative endosymbionts. The A1 fragment encoding a putative transposase and the A6 fragment encoding a putative helicase were selected for further comparison between the two A. pisum variants (green and orange) based on Dam analysis followed by PCR amplification. An association between adenine methylation and the two A. pisum variants was demonstrated by higher adenine methylation levels on both genes in the green variant as compared to the orange one.ConclusionTemperature selection may affect the secondary endosymbiont and the sensitive Dam involved in the survival and adaptation of aphids to cold temperatures. There is a high degree of adenine methylation at the GATC sites of the endosymbiont genes at 8°C, an effect that disappears at 22°C. We suggest that endosymbionts can be modified or selected to increase host fitness under unfavorable climatic conditions, and that the phenotype of the newly adapted aphids can be inherited.


BMC Research Notes | 2009

Using the pea aphid Acrythociphon pisum as a tool for screening biological responses to chemicals and drugs.

Aviv Dombrovsky; Terence Neil Ledger; Gilbert Engler; Alain Robichon

BackgroundThough the biological process of aphid feeding is well documented, no one to date has sought to apply it as a tool to screen the biological responses to chemicals and drugs, in ecotoxicology, genotoxicology and/or for interactions in the cascade of sequential molecular events of embryogenesis. Parthenogenetic insect species present the advantage of an anatomical system composed of multiple germarium/ovarioles in the same mother with all the intermediate maturation stages of embryos from oocyte to first instar larva birth. This could be used as an interesting model to visualize at which step drugs interact with the cell signalling pathway during the ordered developmental process.FindingsWe designed a simple test for screening drugs by investigating simultaneously zygote mitotic division, the progression of embryo development, cell differentiation at early developmental stages and finally organogenesis and population growth rate. We aimed to analyze the toxicology effects of compounds and/or their interference on cellular signalling by examining at which step of the cascade, from zygote to mature embryo, the developmental process is perturbed. We reasoned that a parthenogenetic founder insect, in which the ovarioles shelter numerous embryos at different developmental stages, would allow us to precisely pinpoint the step of embryogenesis in which chemicals act through specific molecular targets as the known ordered homeobox genes.ConclusionUsing this method we report the results of a genotoxicological and demographic analysis of three compound models bearing in common a bromo group: one is integrated as a base analog in DNA synthesis, two others activate permanently kinases. We report that one compound (Br-du) altered drastically embryogenesis, which argues in favor of this simple technique as a cheap first screening of chemicals or drugs to be used in a number of genotoxicology applications.


Journal of Cellular Biochemistry | 2003

Phosphorylation of proteins in neuron terminals: Specificity depends on coincidental signaling

Lixing Zhang; Sylvette Tinette; Alain Robichon

We investigate the role of neuronal coincidental signaling mediated by the second messengers, on phosphorylation of three major proteins of neurosecretory vesicles. Our data show that different combinations of coincidental signaling generate specific pattern of phosphoproteins and not strictly additional effects. This suggests that an added phosphate on a site might ‘mask’ or ‘unmask’ the next sites for specific kinases and phosphatases action by inducing conformation change or protein association. We show that a function of vesicles such as the uptake of glutamate is highly regulated by coincidental signaling.


Genes, Brain and Behavior | 2004

Cooperation between Drosophila flies in searching behavior

Sylvette Tinette; Lixing Zhang; Alain Robichon


Cell Reports | 2016

Functional Gustatory Role of Chemoreceptors in Drosophila Wings

Hussein Raad; Jean-François Ferveur; Neil Ledger; Maria Capovilla; Alain Robichon

Collaboration


Dive into the Alain Robichon's collaboration.

Top Co-Authors

Avatar

Sylvette Tinette

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aviv Dombrovsky

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Lixing Zhang

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Laury Arthaud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Maria Capovilla

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martine Da Rocha

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Neil Ledger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sandra Agnel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sophie Tares

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge