Martine Da Rocha
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martine Da Rocha.
Nature | 2013
Jean-François Flot; Boris Hespeels; Xiang Li; Benjamin Noel; Irina R. Arkhipova; Etienne Danchin; Andreas Hejnol; Bernard Henrissat; Romain Koszul; Jean-Marc Aury; Valérie Barbe; Roxane Marie Barthélémy; Jens Bast; Georgii A. Bazykin; Olivier Chabrol; Arnaud Couloux; Martine Da Rocha; Corinne Da Silva; Eugene Gladyshev; Philippe Gouret; Oskar Hallatschek; Bette Hecox-Lea; Karine Labadie; Benjamin Lejeune; Oliver Piskurek; Julie Poulain; Fernando Rodriguez; Joseph F. Ryan; O. Vakhrusheva; Eric Wajnberg
Loss of sexual reproduction is considered an evolutionary dead end for metazoans, but bdelloid rotifers challenge this view as they appear to have persisted asexually for millions of years. Neither male sex organs nor meiosis have ever been observed in these microscopic animals: oocytes are formed through mitotic divisions, with no reduction of chromosome number and no indication of chromosome pairing. However, current evidence does not exclude that they may engage in sex on rare, cryptic occasions. Here we report the genome of a bdelloid rotifer, Adineta vaga (Davis, 1873), and show that its structure is incompatible with conventional meiosis. At gene scale, the genome of A. vaga is tetraploid and comprises both anciently duplicated segments and less divergent allelic regions. However, in contrast to sexual species, the allelic regions are rearranged and sometimes even found on the same chromosome. Such structure does not allow meiotic pairing; instead, we find abundant evidence of gene conversion, which may limit the accumulation of deleterious mutations in the absence of meiosis. Gene families involved in resistance to oxidation, carbohydrate metabolism and defence against transposons are significantly expanded, which may explain why transposable elements cover only 3% of the assembled sequence. Furthermore, 8% of the genes are likely to be of non-metazoan origin and were probably acquired horizontally. This apparent convergence between bdelloids and prokaryotes sheds new light on the evolutionary significance of sex.
New Phytologist | 2012
Maëlle Jaouannet; Laetitia Perfus-Barbeoch; Emeline Deleury; Marc Magliano; Gilbert Engler; Paulo Vieira; Etienne Danchin; Martine Da Rocha; Patrick Coquillard; Pierre Abad; Marie-Noëlle Rosso
Root-knot nematodes (RKNs) are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks and induce the differentiation of root cells into specialized feeding cells. Nematode effectors synthesized in the oesophageal glands and injected into the plant tissue through the syringe-like stylet certainly play a central role in these processes. In a search for nematode effectors, we used comparative genomics on expressed sequence tag (EST) datasets to identify Meloidogyne incognita genes encoding proteins potentially secreted upon the early steps of infection. We identified three genes specifically expressed in the oesophageal glands of parasitic juveniles that encode predicted secreted proteins. One of these genes, Mi-EFF1 is a pioneer gene that has no similarity in databases and a predicted nuclear localization signal. We demonstrate that RKNs secrete Mi-EFF1 within the feeding site and show Mi-EFF1 targeting to the nuclei of the feeding cells. RKNs were previously shown to secrete proteins in the apoplasm of infected tissues. Our results show that nematodes sedentarily established at the feeding site also deliver proteins within plant cells through their stylet. The protein Mi-EFF1 injected within the feeding cells is targeted at the nuclei where it may manipulate nuclear functions of the host cell.
PLOS Pathogens | 2013
Etienne Danchin; Marie-Jeanne Arguel; Amandine Campan-Fournier; Laetitia Perfus-Barbeoch; Marc Magliano; Marie-Noëlle Rosso; Martine Da Rocha; Corinne Da Silva; Nicolas Nottet; Karine Labadie; Julie Guy; François Artiguenave; Pierre Abad
Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when silenced, constitute promising targets for the development of more specific and safer control means.
PLOS ONE | 2012
Julien Paganini; Amandine Campan-Fournier; Martine Da Rocha; Philippe Gouret; Pierre Pontarotti; Eric Wajnberg; Pierre Abad; Etienne Danchin
Lateral gene transfers (LGT), species to species transmission of genes by means other than direct inheritance from a common ancestor, have played significant role in shaping prokaryotic genomes and are involved in gain or transfer of important biological processes. Whether LGT significantly contributed to the composition of an animal genome is currently unclear. In nematodes, multiple LGT are suspected to have favored emergence of plant-parasitism. With the availability of whole genome sequences it is now possible to assess whether LGT have significantly contributed to the composition of an animal genome and to establish a comprehensive list of these events. We generated clusters of homologous genes and automated phylogenetic inference, to detect LGT in the genomes of root-knot nematodes and found that up to 3.34% of the genes originate from LGT of non-metazoan origin. After their acquisition, the majority of genes underwent series of duplications. Compared to the rest of the genes in these species, several predicted functional categories showed a skewed distribution in the set of genes acquired via LGT. Interestingly, functions related to metabolism, degradation or modification of carbohydrates or proteins were substantially more frequent. This suggests that genes involved in these processes, related to a parasitic lifestyle, have been more frequently fixed in these parasites after their acquisition. Genes from soil bacteria, including plant-pathogens were the most frequent closest relatives, suggesting donors were preferentially bacteria from the rhizosphere. Several of these bacterial genes are plasmid-borne, pointing to a possible role of these mobile genetic elements in the transfer mechanism. Our analysis provides the first comprehensive description of the ensemble of genes of non-metazoan origin in an animal genome. Besides being involved in important processes regarding plant-parasitism, genes acquired via LGT now constitute a substantial proportion of protein-coding genes in these nematode genomes.
PLOS Genetics | 2017
Romain Blanc-Mathieu; Laetitia Perfus-Barbeoch; Jean-Marc Aury; Martine Da Rocha; Jérôme Gouzy; Erika Sallet; Cristina Martin-Jimenez; Marc Bailly-Bechet; Philippe Castagnone-Sereno; Jean-François Flot; Djampa Kozlowski; Julie Cazareth; Arnaud Couloux; Corinne Da Silva; Julie Guy; Yu-Jin Kim-Jo; Corinne Rancurel; Thomas Schiex; Pierre Abad; Patrick Wincker; Etienne Danchin
Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.
RSC Advances | 2016
Martine Da Rocha; Aline R. de Oliveira; Tábata B. Albuquerque; C. D. G. da Silva; Ramesh Katla; Nelson Luís C. Domingues
A simple, efficient and green chemical ultrasound assisted thio-Michael addition reaction between thiols and (Z)-azlactones aiming to produce non-natural amino acid derivatives by using chiral Zn[(L)-Pro]2 as a heterogeneous catalyst is herein described. The product was obtained in good to excellent yields presenting high diastereoselectivity.
Genes | 2017
Etienne Danchin; Laetitia Perfus-Barbeoch; Corinne Rancurel; Peter Thorpe; Martine Da Rocha; Simon Bajew; R. Neilson; Elena Sokolova; Corinne Da Silva; Julie Guy; Karine Labadie; Daniel Esmenjaud; Johannes Helder; John T. Jones; Sebastian Eves-van den Akker
Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.
PLOS ONE | 2014
Claude Pasquier; Mathilde Clément; Aviv Dombrovsky; Stéphanie Penaud; Martine Da Rocha; Corinne Rancurel; Neil Ledger; Maria Capovilla; Alain Robichon
Heritability of acquired phenotypic traits is an adaptive evolutionary process that appears more complex than the basic allele selection guided by environmental pressure. In insects, the trans-generational transmission of epigenetic marks in clonal and/or sexual species is poorly documented. Aphids were used as a model to explore this feature because their asexual phase generates a stochastic and/or environment-oriented repertoire of variants. The a priori unchanged genome in clonal individuals prompts us to hypothesize whether covalent methyl DNA marks might be associated to the phenotypic variability and fitness selection. The full differential transcriptome between two environmentally selected clonal variants that originated from the same founder mother was mapped on the entire genomic scaffolds, in parallel with the methyl cytosine distribution. Data suggest that the assortments of heavily methylated DNA sites are distinct in these two clonal phenotypes. This might constitute an epigenetic mechanism that confers the robust adaptation of insect species to various environments involving clonal reproduction.
bioRxiv | 2018
Chie Kodera; Jérémy Just; Martine Da Rocha; Antoine Larrieu; Lucie Riglet; Jonathan Legrand; Frédérique Rozier; Thierry Gaude; Isabelle Fobis-Loisy
Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. To identify the associated molecular pathways, we developed a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. We succeeded in distinguishing 80 % of transcripts according to their parental origins and drew up a catalog of genes whose expression is modified after pollen-stigma interaction. Global analysis of our data reveals pattern-triggered immunity (PTI). From this analysis, we predicted the activation of the Mitogen-activated Protein Kinase 3 on the female side after compatible pollination, which we confirmed through expression and mutant analysis. Altogether this works provides the molecular signatures of compatible and incompatible pollination, highlights the active status of incompatible stigmas, and unravels a new MPK3-dependent cell wall feature associated with stigma-pollen interaction.
Journal of Molecular Evolution | 2017
Sandra Agnel; Martine Da Rocha; Alain Robichon
The neurogenesis and neuronal functions in insect wing have been understudied mainly due to technical hindrances that have prevented electrophysiology studies for decades. The reason is that the nano-architecture of the wing chemosensory bristles hampers the receptors accessibility of odorants/tastants to receptors in fixed setup, whereas in nature, the wing flapping mixes these molecules in bristle lymph. In this report, we analyzed the transcriptome of the wing tissue of two species phylogenetically strongly divergent: Drosophila melanogaster a generic model for diptera order (complete metamorphosis) and the aphid acyrthosiphon pisum, representative of hemiptera order (incomplete metamorphosis) for which a conditional winged/wingless polyphenism is under control of population density and resources. The transcriptome shows that extensive gene networks involved in chemosensory perception are active in adult wing for both species. Surprisingly, the specific transcripts of genes that are commonly found in eye were present in Drosophila wing but not in aphid. The analysis reveals that in the aphid conditional wing, expressed genes show strong similarities with those in the gut epithelia. This suggests that the epithelial cell layer between the cuticle sheets is persistent at least in young aphid adult, whereas it disappears after emergence in Drosophila. Despite marked differences between the two transcriptomes, the results highlight the probable universalism of wing chemosensory function in the holometabolous and hemimetabolous orders of winged insects.