Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan Belicha-Villanueva is active.

Publication


Featured researches published by Alan Belicha-Villanueva.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus

Balaji Manicassamy; Santhakumar Manicassamy; Alan Belicha-Villanueva; G. Pisanelli; Bali Pulendran; Adolfo García-Sastre

Influenza A virus is being extensively studied because of its major impact on human and animal health. However, the dynamics of influenza virus infection and the cell types infected in vivo are poorly understood. These characteristics are challenging to determine, partly because there is no efficient replication-competent virus expressing an easily traceable reporter gene. Here, we report the generation of a recombinant influenza virus carrying a GFP reporter gene in the NS segment (NS1-GFP virus). Although attenuated when compared with wild-type virus, the NS1-GFP virus replicates efficiently in murine lungs and shows pathogenicity in mice. Using whole-organ imaging and flow cytometry, we have tracked the dynamics of influenza virus infection progression in mice. Imaging of murine lungs shows that infection starts in the respiratory tract in areas close to large conducting airways and later spreads to deeper sections of the lungs. In addition to epithelial cells, we found GFP-positive antigen-presenting cells, such as CD11b+CD11c−, CD11b−CD11c+, and CD11b+CD11c+, as early as 24 h after intranasal infection. In addition, a significant proportion of NK and B cells were GFP positive, suggesting active infection of these cells. We next tested the effects of the influenza virus inhibitors oseltamivir and amantadine on the kinetics of in vivo infection progression. Treatment with oseltamivir dramatically reduced influenza infection in all cell types, whereas, surprisingly, amantadine treatment more efficiently blocked infection in B and NK cells. Our results demonstrate high levels of immune cells harboring influenza virus antigen during viral infection and cell-type–specific effects upon treatment with antiviral agents, opening additional avenues of research in the influenza virus field.


Journal of Virology | 2010

Inhibition of the Type I Interferon Response in Human Dendritic Cells by Dengue Virus Infection Requires a Catalytically Active NS2B3 Complex

Juan R. Rodriguez-Madoz; Alan Belicha-Villanueva; Dabeiba Bernal-Rubio; Joseph Ashour; Juan Ayllon; Ana Fernandez-Sesma

ABSTRACT Dengue virus (DENV) is the most prevalent arthropod-borne human virus, able to infect and replicate in human dendritic cells (DCs), inducing their activation and the production of proinflammatory cytokines. However, DENV can successfully evade the immune response in order to produce disease in humans. Several mechanisms of immune evasion have been suggested for DENV, most of them involving interference with type I interferon (IFN) signaling. We recently reported that DENV infection of human DCs does not induce type I IFN production by those infected DCs, impairing their ability to prime naive T cells toward Th1 immunity. In this article, we report that DENV also reduces the ability of DCs to produce type I IFN in response to several inducers, such as infection with other viruses or exposure to Toll-like receptor (TLR) ligands, indicating that DENV antagonizes the type I IFN production pathway in human DCs. DENV-infected human DCs showed a reduced type I IFN response to Newcastle disease virus (NDV), Sendai virus (SeV), and Semliki Forest virus (SFV) infection and to the TLR3 agonist poly(I:C). This inhibitory effect is DENV dose dependent, requires DENV replication, and takes place in DENV-infected DCs as early as 2 h after infection. Expressing individual proteins of DENV in the presence of an IFN-α/β production inducer reveals that a catalytically active viral protease complex is required to reduce type I IFN production significantly. These results provide a new mechanism by which DENV evades the immune system in humans.


Journal of Virology | 2011

Budding Capability of the Influenza Virus Neuraminidase Can Be Modulated by Tetherin

Mark A. Yondola; Fiona Fernandes; Alan Belicha-Villanueva; Melissa Uccelini; Qinshan Gao; Carol A. Carter; Peter Palese

ABSTRACT We have determined that, in addition to its receptor-destroying activity, the influenza virus neuraminidase is capable of efficiently forming virus-like particles (VLPs) when expressed individually from plasmid DNA. This observation applies to both human subtypes of neuraminidase, N1 and N2. However, it is not found with every strain of influenza virus. Through gain-of-function and loss-of-function analyses, a critical determinant within the neuraminidase ectodomain was identified that contributes to VLP formation but is not sufficient to accomplish release of plasmid-derived VLPs. This sequence lies on the plasma membrane-proximal side of the neuraminidase globular head. Most importantly, we demonstrate that the antiviral restriction factor tetherin plays a role in determining the strain-specific limitations of release competency. If tetherin is counteracted by small interfering RNA knockdown or expression of the HIV anti-tetherin factor vpu, budding and release capability is bestowed upon an otherwise budding-deficient neuraminidase. These data suggest that budding-competent neuraminidase proteins possess an as-yet-unidentified means of counteracting the antiviral restriction factor tetherin and identify a novel way in which the influenza virus neuraminidase can contribute to virus release.


Journal of Virology | 2011

Effects of Receptor Binding Specificity of Avian Influenza Virus on the Human Innate Immune Response

Irene Ramos; Dabeiba Bernal-Rubio; Natasha D. Durham; Alan Belicha-Villanueva; Anice C. Lowen; John Steel; Ana Fernandez-Sesma

ABSTRACT Humans infected by the highly pathogenic H5N1 avian influenza viruses (HPAIV) present unusually high concentrations in serum of proinflammatory cytokines and chemokines, which are believed to contribute to the high pathogenicity of these viruses. The hemagglutinins (HAs) of avian influenza viruses preferentially bind to sialic acids attached through α2,3 linkages (SAα2,3) to the terminal galactose of carbohydrates on the host cell surface, while the HAs from human strains bind to α2,6-linked SA (SAα2,6). To evaluate the role of the viral receptor specificity in promoting innate immune responses in humans, we generated recombinant influenza viruses, one bearing the HA and neuraminidase (NA) genes from the A/Vietnam/1203/2004 H5N1 HPAIV in an influenza A/Puerto Rico/8/1934 (A/PR/8/34) backbone with specificity for SAα2,3 and the other a mutant virus (with Q226L and G228S in the HA) with preferential receptor specificity for SAα2,6. Viruses with preferential affinity for SAα2,3 induced higher levels of proinflammatory cytokines and interferon (IFN)-inducible genes in primary human dendritic cells (DCs) than viruses with SAα2,6 binding specificity, and these differences were independent of viral replication, as shown by infections with UV-inactivated viruses. Moreover, human primary macrophages and respiratory epithelial cells showed higher expression of proinflammatory genes after infection with the virus with SAα2,3 affinity than after infection with the virus with SAα2,6 affinity. These data indicate that binding to SAα2,3 by H5N1 HPAIV may be sensed by human cells differently than binding to SAα2,6, inducing an exacerbated innate proinflammatory response in infected individuals.


Journal of Immunology | 2014

Mucosal Polyinosinic-Polycytidylic Acid Improves Protection Elicited by Replicating Influenza Vaccines via Enhanced Dendritic Cell Function and T Cell Immunity

José Vicente Pérez-Girón; Alan Belicha-Villanueva; Ebrahim Hassan; Sergio Gómez-Medina; Jazmina L. Cruz; Anja Lüdtke; Paula Ruibal; Randy A. Albrecht; Adolfo García-Sastre; César Muñoz-Fontela

Live-attenuated influenza vaccines (LAIVs) have the potential to generate CD8 T cell immunity that may limit the virulence of an antigenically shifted influenza strain in a population lacking protective Abs. However, current LAIVs exert limited T cell immunity restricted to the vaccine strains. One approach to improve LAIV-induced T cell responses is the use of specific adjuvants to enhance T cell priming by respiratory dendritic cells, but this hypothesis has not been addressed. In this study, we assessed the effect of the TLR3 ligand polyinosinic-polycytidylic acid (poly IC) on CD8 T cell immunity and protection elicited by LAIVs. Mucosal treatment with poly IC shortly after vaccination enhanced respiratory dendritic cell function, CD8 T cell formation, and production of neutralizing Abs. This adjuvant effect of poly IC was dependent on amplification of TLR3 signaling by nonhematopoietic radioresistant cells and enhanced mouse protection to homosubtypic, as well as heterosubtypic, virus challenge. Our findings indicate that mucosal TLR3 ligation may be used to improve CD8 T cell responses to replicating vaccines, which has implications for protection in the absence of pre-existing Ab immunity.


Journal of Molecular Biology | 2014

Modulation of an ectodomain motif in the influenza A virus neuraminidase alters tetherin sensitivity and results in virus attenuation in vivo.

Victor H. Leyva-Grado; Rong Hai; Fiona Fernandes; Alan Belicha-Villanueva; Carol A. Carter; Mark A. Yondola

We previously demonstrated that ectodomain residue Asp286 in N2 neuraminidase (NA; Asp268 in N1 NA) present in budding-capable NA proteins contributes to productive NA plasma membrane transport partly by mediating escape from tetherin restriction [Yondola MA, Fernandes F, Belicha-Villanueva A, Uccelini M, Gao Q, Carter C, et al. (2011). Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J Virol, 85, 2480-2491]. Budding-incapable NA proteins contain a G at this position and either co-expression of human immunodeficiency virus type 1 vpu or siRNA-mediated depletion of tetherin rescued budding capabilities in these proteins [Yondola MA, Fernandes F, Belicha-Villanueva A, Uccelini M, Gao Q, Carter C, et al. (2011). Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J Virol, 85, 2480-2491]. Furthermore, replacement of D286 with G in budding-capable NA proteins caused loss of function, preventing release of NA virus-like particles (VLPs). Here, we show that mutation of this residue specifically modulates the ability of NA to escape tetherin restriction at the plasma membrane and results in virus attenuation in vivo. Based on immunogold electron microscopy and co-immunoprecipitation assays, both NAD286-containing and NAD286G-containing proteins associated with tetherin in the endoplasmic reticulum (ER). However, the NAD286G loss-of-function mutant also associated with the host factor outside the ER and in plasma-membrane-localized VLPs as visualized using immunogold electron microscopy. We conclude that the presence of aspartate at residue 286 liberates NA from tetherin-dependent restriction upon exit from the ER compartment thus preventing restriction at the plasma membrane. Underscoring the importance of these observations, knockdown of tetherin resulted in a 1-1.5 log increase in influenza virus growth. Additionally, the loss-of-function mutation conferred attenuation in a mouse model of influenza infection as evidenced by a 5-fold increase in LD50 and increases in either percent survival or time to death dependent on the administered dose in vivo.


Journal of Virology | 2012

Attenuated Influenza Virus Construct with Enhanced Hemagglutinin Protein Expression

Jad Maamary; Natalie Pica; Alan Belicha-Villanueva; Florian Krammer; Qinshan Gao; Adolfo García-Sastre; Peter Palese

ABSTRACT Influenza A viruses encoding an altered viral NS1 protein have emerged as promising live attenuated vaccine platforms. A carboxy-terminal truncation in the NS1 protein compromises its interferon antagonism activity, making these viruses attenuated in the host yet still able to induce protection from challenge with wild-type viruses. However, specific viral protein expression by NS1-truncated viruses is known to be decreased in infected cells. In this report, we show that recombinant H5N1 and H1N1 influenza viruses encoding a truncated NS1 protein expressed lower levels of hemagglutinin (HA) protein in infected cells than did wild-type viruses. This reduction in HA protein expression correlated with a reduction in HA mRNA levels in infected cells. NS1 truncation affected the expression of HA protein but not that of the nucleoprotein (NP). This segment specificity was mapped to the terminal sequences of their specific viral RNAs. Since the HA protein is the major immunogenic component in influenza virus vaccines, we sought to restore its expression levels in NS1-truncated viruses in order to improve their vaccine efficacy. For this purpose, we generated an NS1-truncated recombinant influenza A/Puerto Rico/8/34 (rPR8) virus carrying the G3A C8U “superpromoter” mutations in the HA genomic RNA segment. This strategy retained the attenuation properties of the recombinant virus but enhanced the expression level of HA protein in infected cells. Finally, mice immunized with rPR8 viruses encoding a truncated NS1 protein and carrying the G3A C8U mutations in the HA segment demonstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rPR8 virus encoding the truncated NS1 protein alone.


Journal of Virology | 2012

Recombinant Influenza A Viruses with Enhanced Levels of PB1 and PA Viral Protein Expression

Alan Belicha-Villanueva; Juan R. Rodriguez-Madoz; Jad Maamary; Alina Baum; Dabeiba Bernal-Rubio; Maria Minguito de la Escalera; Ana Fernandez-Sesma; Adolfo García-Sastre

ABSTRACT Influenza A viruses containing the promoter mutations G3A/C8U in a given segment express increased levels of the corresponding viral protein during infection due to increased levels of mRNA or cRNA species. The replication of these recombinant viruses is attenuated, and they have an enhanced shedding of noninfectious particles and are incapable of antagonizing interferon (IFN) effectively. Our findings highlight the possibility of increasing influenza virus protein expression and the need for a delicate balance between influenza viral replication, protein expression, and assembly.


Journal of Virology | 2013

Substitutions T200A and E227A in the Hemagglutinin of Pandemic 2009 Influenza A Virus Increase Lethality but Decrease Transmission

Carles Martínez-Romero; Erik de Vries; Alan Belicha-Villanueva; Ignacio Mena; Donna M. Tscherne; Virginia L. Gillespie; Randy A. Albrecht; Cornelis A. M. de Haan; Adolfo García-Sastre

ABSTRACT We report that swine influenza virus-like substitutions T200A and E227A in the hemagglutinin (HA) of the 2009 pandemic influenza virus alter its pathogenesis and transmission. Viral replication is increased in mammalian cells. Infected mice show increased disease as measured by weight loss and lethality. Transmission in ferrets is decreased in the presence of both substitutions, suggesting that amino acids 200T and 227E are adaptive changes in the HA of swine origin influenza viruses associated with increased transmission and decreased pathogenesis.


Cell Host & Microbe | 2010

Mouse STAT2 Restricts Early Dengue Virus Replication

Joseph Ashour; Juliet Morrison; Maudry Laurent-Rolle; Alan Belicha-Villanueva; Courtney R. Plumlee; Dabeiba Bernal-Rubio; Katherine L. Williams; Eva Harris; Ana Fernandez-Sesma; Christian Schindler; Adolfo García-Sastre

Collaboration


Dive into the Alan Belicha-Villanueva's collaboration.

Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana Fernandez-Sesma

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

G. Pisanelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Dabeiba Bernal-Rubio

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maudry Laurent-Rolle

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana M. Maestre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Benjamin R. tenOever

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Carles Martínez-Romero

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge