Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana M. Maestre is active.

Publication


Featured researches published by Ana M. Maestre.


PLOS Pathogens | 2012

DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING

Sebastian Aguirre; Ana M. Maestre; Sarah Pagni; Jenish R. Patel; Timothy Savage; Delia Gutman; Kevin Maringer; Dabeiba Bernal-Rubio; Reed S. Shabman; Viviana Simon; Juan R. Rodriguez-Madoz; Lubbertus C. F. Mulder; Glen N. Barber; Ana Fernandez-Sesma

Dengue virus (DENV) is a pathogen with a high impact on human health. It replicates in a wide range of cells involved in the immune response. To efficiently infect humans, DENV must evade or inhibit fundamental elements of the innate immune system, namely the type I interferon response. DENV circumvents the host immune response by expressing proteins that antagonize the cellular innate immunity. We have recently documented the inhibition of type I IFN production by the proteolytic activity of DENV NS2B3 protease complex in human monocyte derived dendritic cells (MDDCs). In the present report we identify the human adaptor molecule STING as a target of the NS2B3 protease complex. We characterize the mechanism of inhibition of type I IFN production in primary human MDDCs by this viral factor. Using different human and mouse primary cells lacking STING, we show enhanced DENV replication. Conversely, mutated versions of STING that cannot be cleaved by the DENV NS2B3 protease induced higher levels of type I IFN after infection with DENV. Additionally, we show that DENV NS2B3 is not able to degrade the mouse version of STING, a phenomenon that severely restricts the replication of DENV in mouse cells, suggesting that STING plays a key role in the inhibition of DENV infection and spread in mice.


Immunity | 2013

The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors

Gijs A. Versteeg; Ricardo Rajsbaum; Maria Teresa Sánchez-Aparicio; Ana M. Maestre; Julio Valdiviezo; Mude Shi; Kyung Soo Inn; Ana Fernandez-Sesma; Jae Jung; Adolfo García-Sastre

Innate immunity conferred by the type I interferon is critical for antiviral defense. To date only a limited number of tripartite motif (TRIM) proteins have been implicated in modulation of innate immunity and anti-microbial activity. Here we report the complementary DNA cloning and systematic analysis of all known 75 human TRIMs. We demonstrate that roughly half of the 75 TRIM-family members enhanced the innate immune response and that they do this at multiple levels in signaling pathways. Moreover, messenger RNA levels and localization of most of these TRIMs were found to be altered during viral infection, suggesting that their regulatory activities are highly controlled at both pre- and posttranscriptional levels. Taken together, our data demonstrate a very considerable dedication of this large protein family to the positive regulation of the antiviral response, which supports the notion that this family of proteins evolved as a component of innate immunity.


PLOS Pathogens | 2017

A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses

Shashank Tripathi; Vinod R. M. T. Balasubramaniam; Julia A. Brown; Ignacio Mena; Alesha Grant; Susana V. Bardina; Kevin Maringer; Megan C. Schwarz; Ana M. Maestre; Marion Sourisseau; Randy A. Albrecht; Florian Krammer; Matthew J. Evans; Ana Fernandez-Sesma; Jean K. Lim; Adolfo García-Sastre

Zika virus (ZIKV) is a mosquito borne flavivirus, which was a neglected tropical pathogen until it emerged and spread across the Pacific Area and the Americas, causing large human outbreaks associated with fetal abnormalities and neurological disease in adults. The factors that contributed to the emergence, spread and change in pathogenesis of ZIKV are not understood. We previously reported that ZIKV evades cellular antiviral responses by targeting STAT2 for degradation in human cells. In this study, we demonstrate that Stat2-/- mice are highly susceptible to ZIKV infection, recapitulate virus spread to the central nervous system (CNS), gonads and other visceral organs, and display neurological symptoms. Further, we exploit this model to compare ZIKV pathogenesis caused by a panel of ZIKV strains of a range of spatiotemporal history of isolation and representing African and Asian lineages. We observed that African ZIKV strains induce short episodes of severe neurological symptoms followed by lethality. In comparison, Asian strains manifest prolonged signs of neuronal malfunctions, occasionally causing death of the Stat2-/- mice. African ZIKV strains induced higher levels of inflammatory cytokines and markers associated with cellular infiltration in the infected brain in mice, which may explain exacerbated pathogenesis in comparison to those of the Asian lineage. Interestingly, viral RNA levels in different organs did not correlate with the pathogenicity of the different strains. Taken together, we have established a new murine model that supports ZIKV infection and demonstrate its utility in highlighting intrinsic differences in the inflammatory response induced by different ZIKV strains leading to severity of disease. This study paves the way for the future interrogation of strain-specific changes in the ZIKV genome and their contribution to viral pathogenesis.


Nature microbiology | 2017

Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection

Sebastian Aguirre; Priya Luthra; Maria Teresa Sánchez-Aparicio; Ana M. Maestre; Jenish R. Patel; Francise Lamothe; Anthony C. Fredericks; Shashank Tripathi; Tongtong Zhu; Jessica Pintado-Silva; Laurence G. Webb; Dabeiba Bernal-Rubio; Alexander Solovyov; Benjamin D. Greenbaum; Viviana Simon; Christopher F. Basler; Lubbertus C. F. Mulder; Adolfo García-Sastre; Ana Fernandez-Sesma

During the last few decades, the global incidence of dengue virus (DENV) has increased dramatically, and it is now endemic in more than 100 countries. To establish a productive infection in humans, DENV uses different strategies to inhibit or avoid the host innate immune system. Several DENV proteins have been shown to strategically target crucial components of the type I interferon system. Here, we report that the DENV NS2B protease cofactor targets the DNA sensor cyclic GMP-AMP synthase (cGAS) for lysosomal degradation to avoid the detection of mitochondrial DNA during infection. Such degradation subsequently results in the inhibition of type I interferon production in the infected cell. Our data demonstrate a mechanism by which cGAS senses cellular damage upon DENV infection.


PLOS Pathogens | 2017

Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells

Claudia V. Filomatori; Juan Manuel Carballeda; Sergio M. Villordo; Sebastian Aguirre; Horacio M. Pallarés; Ana M. Maestre; Irma Sanchez-Vargas; Carol D. Blair; Cintia Fabri; Maria A. Morales; Ana Fernandez-Sesma; Andrea V. Gamarnik

The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3’UTRs (known as sfRNAs), relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3’UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3’UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of flavivirus 3’UTRs with possible implications in virulence and viral transmission.


Nature Immunology | 2015

Senataxin suppresses the antiviral transcriptional response and controls viral biogenesis

Matthew S. Miller; Alexander Rialdi; Jessica Sook Yuin Ho; Micah Tilove; Luis Martinez-Gil; Natasha Moshkina; Zuleyma Peralta; Justine Noel; Camilla Melegari; Ana M. Maestre; Panagiotis Mitsopoulos; Joaquín Madrenas; Sven Heinz; Christopher Benner; John A. T. Young; Alicia R. Feagins; Christopher F. Basler; Ana Fernandez-Sesma; Olivier J. Becherel; Martin F. Lavin; Harm van Bakel; Ivan Marazzi

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Cell Host & Microbe | 2015

BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency

Lars Pache; Miriam S. Dutra; Adam M. Spivak; John Marlett; Jeffrey P. Murry; Young Hwang; Ana M. Maestre; Lara Manganaro; Mitchell Vamos; Peter Teriete; Laura J. Martins; Renate König; Viviana Simon; Alberto Bosque; Ana Fernandez-Sesma; Nicholas Dp Cosford; Frederic D. Bushman; John A. T. Young; Vicente Planelles; Sumit K. Chanda

Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir.


PLOS ONE | 2012

The Infectious Bursal Disease Virus RNA-Binding VP3 Polypeptide Inhibits PKR-Mediated Apoptosis

Idoia Busnadiego; Ana M. Maestre; D. Rodriguez; José F. Rodríguez

Infectious bursal disease virus (IBDV) is an avian pathogen responsible for an acute immunosuppressive disease that causes major losses to the poultry industry. Despite having a bipartite dsRNA genome, IBDV, as well as other members of the Birnaviridae family, possesses a single capsid layer formed by trimers of the VP2 capsid protein. The capsid encloses a ribonucleoprotein complex formed by the genome associated to the RNA-dependent RNA polymerase and the RNA-binding polypeptide VP3. A previous report evidenced that expression of the mature VP2 IBDV capsid polypeptide triggers a swift programmed cell death response in a wide variety of cell lines. The mechanism(s) underlying this effect remained unknown. Here, we show that VP2 expression in HeLa cells activates the double-stranded RNA (dsRNA)-dependent protein kinase (PKR), which in turn triggers the phosphorylation of the eukaryotic initiation factor 2α (eIF2α). This results in a strong blockade of protein synthesis and the activation of an apoptotic response which is efficiently blocked by coexpression of a dominant negative PKR polypeptide. Our results demonstrate that coexpression of the VP3 polypeptide precludes phosphorylation of both PKR and eIF2α and the onset of programmed cell death induced by VP2 expression. A mutation blocking the capacity of VP3 to bind dsRNA also abolishes its capacity to prevent PKR activation and apoptosis. Further experiments showed that VP3 functionally replaces the host-range vaccinia virus (VACV) E3 protein, thus allowing the E3 deficient VACV deletion mutant WRΔE3L to grow in non-permissive cell lines. According to results presented here, VP3 can be categorized along with other well characterized proteins such us VACV E3, avian reovirus sigmaA, and influenza virus NS1 as a virus-encoded dsRNA-binding polypeptide with antiapoptotic properties. Our results suggest that VP3 plays a central role in ensuring the viability of the IBDV replication cycle by preventing programmed cell death.


Journal of Virology | 2015

HIV Vpu Interferes with NF-κB Activity but Not with Interferon Regulatory Factor 3

Lara Manganaro; Elisa de Castro; Ana M. Maestre; Kevin Olivieri; Adolfo García-Sastre; Ana Fernandez-Sesma; Viviana Simon

ABSTRACT The accessory HIV protein Vpu inhibits a number of cellular pathways that trigger host innate restriction mechanisms. HIV Vpu-mediated degradation of tetherin allows efficient particle release and hampers the activation of the NF-κB pathway thereby limiting the expression of proinflammatory genes. In addition, Vpu reduces cell surface expression of several cellular molecules such as newly synthesized CD4. However, the role of HIV Vpu in regulating the type 1 interferon response to viral infection by degradation of the interferon regulatory factor 3 (IRF3) has been subject of conflicting reports. We therefore systematically investigated the expression of IRF3 in primary CD4+ T cells and macrophages infected with HIV at different time points. In addition, we also tested the ability of Vpu to interfere with innate immune signaling pathways such as the NF-κB and the IRF3 pathways. We report here that HIV Vpu failed to degrade IRF3 in infected primary cells. Moreover, we observed that HIV NL4.3 Vpu had no effect on IRF3-dependent gene expression in reporter assays. On the other hand, HIV NL4.3 Vpu downmodulated NF-κB-dependent transcription. Mutation of two serines (positions 52 and 56) involved in the binding of NL4.3 Vpu to the βTrCP ubiquitin ligase abolishes its ability to inhibit NF-κB activity. Taken together, these results suggest that HIV Vpu regulates antiviral innate response in primary human cells by acting specifically on the NF-κB pathway. IMPORTANCE HIV Vpu plays a pivotal role in enhancing HIV infection by counteraction of Tetherin. However, Vpu also regulates host response to HIV infection by hampering the type 1 interferon response. The molecular mechanism by which Vpu inhibits the interferon response is still controversial. Here we report that Vpu affects interferon expression by inhibiting NF-κB activity without affecting IRF3 levels or activity. These data suggest that Vpu facilitates HIV infection by regulating NF-κB transcription to levels sufficient for viral transcription while limiting cellular responses to infection.


Biochemical and Biophysical Research Communications | 2017

Antagonism of type I interferon by flaviviruses

Lisa Miorin; Ana M. Maestre; Ana Fernandez-Sesma; Adolfo García-Sastre

The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the hosts immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.

Collaboration


Dive into the Ana M. Maestre's collaboration.

Top Co-Authors

Avatar

Ana Fernandez-Sesma

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Viviana Simon

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Gijs A. Versteeg

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jenish R. Patel

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ricardo Rajsbaum

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alan Belicha-Villanueva

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Benjamin R. tenOever

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dabeiba Bernal-Rubio

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kevin Maringer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge