Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan C. Love is active.

Publication


Featured researches published by Alan C. Love.


Biology and Philosophy | 2003

Evolutionary Morphology, Innovation, and the Synthesis of Evolutionary and Developmental Biology

Alan C. Love

One foundational question in contemporarybiology is how to `rejoin’ evolution anddevelopment. The emerging research program(evolutionary developmental biology or`evo-devo’) requires a meshing of disciplines,concepts, and explanations that have beendeveloped largely in independence over the pastcentury. In the attempt to comprehend thepresent separation between evolution anddevelopment much attention has been paid to thesplit between genetics and embryology in theearly part of the 20th century with itscodification in the exclusion of embryologyfrom the Modern Synthesis. This encourages acharacterization of evolutionary developmentalbiology as the marriage of evolutionary theoryand embryology via developmental genetics. Butthere remains a largely untold story about thesignificance of morphology and comparativeanatomy (also minimized in the ModernSynthesis). Functional and evolutionarymorphology are critical for understanding thedevelopment of a concept central toevolutionary developmental biology,evolutionary innovation. Highlighting thediscipline of morphology and the concepts ofinnovation and novelty provides an alternativeway of conceptualizing the `evo’ and the `devo’to be synthesized.


Evolution & Development | 2003

Knowing your ancestors: themes in the history of evo-devo.

Alan C. Love; Rudolf A. Raff

In his magnum opus on the structure of evolutionary theory, Stephen Jay Gould offers the following justification for his extensive attention to the history of evolutionary ideas: ‘‘I regard such analysis not as an antiquarian indulgence, but as an optimal path to [a] proper understanding of our current commitments, and the underlying reasons for our decisions about them’’ (Gould 2002). Evolutionary developmental biology (‘‘evo-devo’’) has become a legitimate research discipline in contemporary biology, and it is time to more adequately trace its origins. A number of articles and conferences have begun an attempt at addressing the historical background to the emergence of evo-devo. The Dibner Institute for the History of Science and Technology has held two workshops entitled ‘‘From Embryology to EvoDevo’’ (summer 2001 at Marine Biological Laboratories in Woods Hole, MA; fall 2002 at the Dibner Institute in Cambridge, MA), with biologists, historians, and philosophers attempting to seek key contours for a history of evodevo. Some participants have attempted to highlight the relevance of particular researchers, whereas others have tried to isolate key institutional changes that fostered evo-devo as we now see it. Similar work is also emerging in refereed journals (Guralnick 2002). Our goal here is to suggest that a different sorting of the


Theory in Biosciences | 2006

Evolutionary morphology and Evo-devo: Hierarchy and novelty

Alan C. Love

Although the role of morphology in evolutionary theory remains a subject of debate, assessing the contributions of morphological investigation to evolutionary developmental biology (Evo-devo) is a more circumscribed issue of direct relevance to ongoing research. Historical studies of morphologically oriented researchers and the formation of the Modern Synthesis in the Anglo-American context identify a recurring theme: the synthetic theory of evolution did not capture multiple levels of biological organization. When this feature is incorporated into a philosophical framework for explaining the origin of evolutionary innovations and novelties (a core domain of inquiry in Evo-devo) two specific roles for morphology can be described: (1) the conceptualization and operational identification of the targets of explanation; and (2) the elucidation of causal interactions at higher levels of organization during ontogeny and through evolutionary time. These roles are critical components of any adequate explanation of innovation and novelty though not exhaustive of the parts played by morphology in evolutionary investigation. They also invite reflection on what counts as an evolutionary cause in contemporary evolutionary biology.


Journal of Experimental Zoology | 2012

Conceptualizing Evolutionary Novelty: Moving Beyond Definitional Debates

Ingo Brigandt; Alan C. Love

According to many biologists, explaining the evolution of morphological novelty and behavioral innovation are central endeavors in contemporary evolutionary biology. These endeavors are inherently multidisciplinary but also have involved a high degree of controversy. One key source of controversy is the definitional diversity associated with the concept of evolutionary novelty, which can lead to contradictory claims (a novel trait according to one definition is not a novel trait according to another). We argue that this diversity should be interpreted in light of a different epistemic role played by the concept of evolutionary novelty-the structuring of a problem space or setting of an explanatory agenda-rather than the concepts capacity to categorize traits as novel. This distinctive role is consistent with the definitional diversity and shows that the concept of novelty benefits ongoing investigation by focusing attention on answering different questions related to comprehending the origins of novelty. A review of recent theoretical and empirical work on evolutionary novelty confirms this interpretation.


Philosophy of Science | 2008

Explaining Evolutionary Innovations and Novelties: Criteria of Explanatory Adequacy and Epistemological Prerequisites

Alan C. Love

It is a common complaint that antireductionist arguments are primarily negative. Here I describe an alternative nonreductionist epistemology based on considerations taken from multidisciplinary research in biology. The core of this framework consists in seeing investigation as coordinated around sets of problems (problem agendas) that have associated criteria of explanatory adequacy. These ideas are developed in a case study, the explanation of evolutionary innovations and novelties, which demonstrates the applicability and fruitfulness of this nonreductionist epistemological perspective. This account also bears on questions of conceptual change and theory structure in philosophy of science.


Evolutionary Biology-new York | 2010

Evolutionary Novelty and the Evo-Devo Synthesis: Field Notes

Ingo Brigandt; Alan C. Love

Accounting for the evolutionary origins of morphological novelty is one of the core challenges of contemporary evolutionary biology. A successful explanatory framework requires the integration of different biological disciplines, but the relationships between developmental biology and standard evolutionary biology remain contested. There is also disagreement about how to define the concept of evolutionary novelty. These issues were the subjects of a workshop held in November 2009 at the University of Alberta. We report on the discussion and results of this workshop, addressing questions about (i) how to define evolutionary novelty and understand its significance, (ii) how to interpret evolutionary developmental biology as a synthesis and its relation to neo-Darwinian evolutionary theory, and (iii) how to integrate disparate biological approaches in general.


Evolution & Development | 2015

The significance and scope of evolutionary developmental biology: A vision for the 21st century

Armin P. Moczek; Karen E. Sears; Angelika Stollewerk; Patricia J. Wittkopp; Pamela K. Diggle; Ian Dworkin; Cristina Ledon-Rettig; David Q. Matus; Siegfried Roth; Ehab Abouheif; Federico D. Brown; Chi Hua Chiu; C. Sarah Cohen; Anthony W. De Tomaso; Scott F. Gilbert; Brian K. Hall; Alan C. Love; Deirdre C. Lyons; Thomas J. Sanger; Joel Smith; Chelsea D. Specht; Mario Vallejo-Marín; Cassandra G. Extavour

Evolutionary developmental biology (evo‐devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo‐devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines—from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself—and discuss why evo‐devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo‐devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.


Evolution & Development | 2015

The significance and scope of evolutionary developmental biology

Armin P. Moczek; Karen E. Sears; Angelika Stollewerk; Patricia J. Wittkopp; Pamela K. Diggle; Ian Dworkin; Cristina Ledon-Rettig; David Q. Matus; Siegfried Roth; Ehab Abouheif; Federico D. Brown; Chi Hua Chiu; C. Sarah Cohen; Anthony W. De Tomaso; Scott F. Gilbert; Brian K. Hall; Alan C. Love; Deirdre C. Lyons; Thomas J. Sanger; Joel Smith; Chelsea D. Specht; Mario Vallejo-Marín; Cassandra G. Extavour

Evolutionary developmental biology (evo‐devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo‐devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines—from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself—and discuss why evo‐devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo‐devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.


Philosophical Transactions of the Royal Society B | 2010

Idealization in evolutionary developmental investigation: a tension between phenotypic plasticity and normal stages

Alan C. Love

Idealization is a reasoning strategy that biologists use to describe, model and explain that purposefully departs from features known to be present in nature. Similar to other strategies of scientific reasoning, idealization combines distinctive strengths alongside of latent weaknesses. The study of ontogeny in model organisms is usually executed by establishing a set of normal stages for embryonic development, which enables researchers in different laboratory contexts to have standardized comparisons of experimental results. Normal stages are a form of idealization because they intentionally ignore known variation in development, including variation associated with phenotypic plasticity (e.g. via strict control of environmental variables). This is a tension between the phenomenon of plasticity and the practice of staging that has consequences for evolutionary developmental investigation because variation is conceptually removed as a part of rendering model organisms experimentally tractable. Two compensatory tactics for mitigating these consequences are discussed: employing a diversity of model organisms and adopting alternative periodizations.


Acta Biotheoretica | 2009

Typology Reconfigured: From the Metaphysics of Essentialism to the Epistemology of Representation

Alan C. Love

The goal of this paper is to encourage a reconfiguration of the discussion about typology in biology away from the metaphysics of essentialism and toward the epistemology of classifying natural phenomena for the purposes of empirical inquiry. First, I briefly review arguments concerning ‘typological thinking’, essentialism, species, and natural kinds, highlighting their predominantly metaphysical nature. Second, I use a distinction between the aims, strategies, and tactics of science to suggest how a shift from metaphysics to epistemology might be accomplished. Typological thinking can be understood as a scientific tactic that involves representing natural phenomena using idealizations and approximations, which facilitates explanation, investigation, and theorizing via abstraction and generalization. Third, a variety of typologies from different areas of biology are introduced to emphasize the diversity of this representational reasoning. One particular example is used to examine how there can be epistemological conflict between typology and evolutionary analysis. This demonstrates that alternative strategies of typological thinking arise due to the divergent explanatory goals of researchers working in different disciplines with disparate methodologies. I conclude with several research questions that emerge from an epistemological reconfiguration of typology.

Collaboration


Dive into the Alan C. Love's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Sarah Cohen

San Francisco State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge