Alan K. Knapp
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alan K. Knapp.
BioScience | 2003
David R. Foster; Frederick J. Swanson; John D. Aber; Ingrid C. Burke; Nicholas Brokaw; David Tilman; Alan K. Knapp
Abstract Recognition of the importance of land-use history and its legacies in most ecological systems has been a major factor driving the recent focus on human activity as a legitimate and essential subject of environmental science. Ecologists, conservationists, and natural resource policymakers now recognize that the legacies of land-use activities continue to influence ecosystem structure and function for decades or centuries—or even longer—after those activities have ceased. Consequently, recognition of these historical legacies adds explanatory power to our understanding of modern conditions at scales from organisms to the globe and reduces missteps in anticipating or managing for future conditions. As a result, environmental history emerges as an integral part of ecological science and conservation planning. By considering diverse ecological phenomena, ranging from biodiversity and biogeochemical cycles to ecosystem resilience to anthropogenic stress, and by examining terrestrial and aquatic ecosystems in temperate to tropical biomes, this article demonstrates the ubiquity and importance of land-use legacies to environmental science and management.
Nature | 2004
Travis E. Huxman; Melinda D. Smith; Philip A. Fay; Alan K. Knapp; M. Rebecca Shaw; Michael E. Loik; Stanley D. Smith; David T. Tissue; John C. Zak; Jake F. Weltzin; William T. Pockman; Osvaldo E. Sala; Brent M. Haddad; John Harte; George W. Koch; Susan Schwinning; Eric E. Small; David G. Williams
Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUEmax) that is typical of arid ecosystems. RUEmax was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.
BioScience | 2003
Jake F. Weltzin; Michael E. Loik; Susanne Schwinning; David G. Williams; Philip A. Fay; Brent M. Haddad; John Harte; Travis E. Huxman; Alan K. Knapp; Guanghui Lin; William T. Pockman; Rebecca Shaw; Eric E. Small; Melinda D. Smith; Stanley D. Smith; David T. Tissue; John C. Zak
Abstract Changes in Earths surface temperatures caused by anthropogenic emissions of greenhouse gases are expected to affect global and regional precipitation regimes. Interactions between changing precipitation regimes and other aspects of global change are likely to affect natural and managed terrestrial ecosystems as well as human society. Although much recent research has focused on assessing the responses of terrestrial ecosystems to rising carbon dioxide or temperature, relatively little research has focused on understanding how ecosystems respond to changes in precipitation regimes. Here we review predicted changes in global and regional precipitation regimes, outline the consequences of precipitation change for natural ecosystems and human activities, and discuss approaches to improving understanding of ecosystem responses to changing precipitation. Further, we introduce the Precipitation and Ecosystem Change Research Network (PrecipNet), a new interdisciplinary research network assembled to encourage and foster communication and collaboration across research groups with common interests in the impacts of global change on precipitation regimes, ecosystem structure and function, and the human enterprise.
BioScience | 2008
Alan K. Knapp; Claus Beier; David D. Briske; Aimée T. Classen; Yiqi Luo; Markus Reichstein; Melinda D. Smith; Stanley D. Smith; Jesse E. Bell; Philip A. Fay; Jana L. Heisler; Steven W. Leavitt; Rebecca A. Sherry; Benjamin Smith; Ensheng Weng
ABSTRACT Amplification of the hydrological cycle as a consequence of global warming is forecast to lead to more extreme intra-annual precipitation regimes characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a broad range of terrestrial ecosystems that vary in their overall water balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit the opposite response to extreme events. Larger but less frequent rainfall events may result in proportional reductions in evaporative losses in xeric systems, and thus may lead to greater soil water availability. Hydric (wetland) ecosystems are predicted to experience reduced periods of anoxia in response to prolonged intervals between rainfall events. Understanding these contingent effects of ecosystem water balance is necessary for predicting how more extreme precipitation regimes will modify ecosystem processes and alter interactions with related global change drivers.
BioScience | 1999
Alan K. Knapp; John M. Blair; John M. Briggs; Scott L. Collins; Loretta C. Johnson; E. Gene Towne
Your use of the JSTOR archive indicates your acceptance of JSTORs Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTORs Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
Science | 2010
Erika J. Edwards; Colin P. Osborne; Caroline A.E. Strömberg; Stephen A. Smith; William J. Bond; Pascal-Antoine Christin; Asaph B. Cousins; Melvin R. Duvall; David L. Fox; Robert P. Freckleton; James Hartwell; Yongsong Huang; Christine M. Janis; Jon E. Keeley; Elizabeth A. Kellogg; Alan K. Knapp; Andrew D. B. Leakey; David M. Nelson; Jeffery M. Saarela; Rowan F. Sage; Osvaldo E. Sala; Nicolas Salamin; Christopher J. Still; Brett J. Tipple
Grassland Emergence The evolution of the C4 photosynthetic pathway from the ancestral C3 pathway in grasses led to the establishment of grasslands in warm climates during the Late Miocene (8 to 3 million years ago). This was a major event in plant evolutionary history, and their high rates of foliage production sustained high levels of herbivore consumption. The past decade has seen significant advances in understanding C4 grassland ecosystem ecology, and now a wealth of data on the geological history of these ecosystems has accumulated and the phylogeny of grasses is much better known. Edwards et al. (p. 587) review this multidisciplinary research area and attempt to synthesize emerging knowledge about the evolution of grass species within the context of plant and ecosystem ecology. The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.
American Journal of Botany | 2001
Gregory A. Carter; Alan K. Knapp
A number of studies have linked responses in leaf spectral reflectance, transmittance, or absorptance to physiological stress. A variety of stressors including dehydration, flooding, freezing, ozone, herbicides, competition, disease, insects, and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In all cases, the maximum difference in reflectance within the 400-850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelengths near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentration of model leaves (fiberglass filter pads) and by the natural variability in leaf chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.
BioScience | 2005
John M. Briggs; Alan K. Knapp; John M. Blair; Jana L. Heisler; Greg A. Hoch; Michelle S. Lett; James K. McCarron
Abstract Woody plant expansion is one of the greatest contemporary threats to mesic grasslands of the central United States. In this article, we synthesize more than 20 years of research to elucidate the causes and consequences of the ongoing transition of C4-dominated grasslands to savanna-like ecosystems codominated by grasses and woody plants. This transition is contingent on fire-free intervals, which provide the opportunity for recruitment both of new individuals and of additional shrub and tree species into this grassland. Once shrubs establish, their cover increases regardless of fire frequency, and infrequent fires accelerate the spread of some shrub species. This process has resulted in a new dynamic state of shrub–grass coexistence in the mesic grasslands of North America. Important consequences of this shift in plant life-form abundance include alterations in plant productivity, species diversity, and carbon storage. Without drastic measures such as mechanical removal of shrubs, it is unlikely that management of fire and grazing regimes alone will be sufficient to restore historic grass dominance in these ecosystems.
Oecologia | 2004
Jack A. Morgan; Diane E. Pataki; Christian Körner; H. Clark; S. J. Del Grosso; José M. Grünzweig; Alan K. Knapp; A. R. Mosier; Paul C. D. Newton; Pascal A. Niklaus; Jesse B. Nippert; Robert S. Nowak; William J. Parton; H. W. Polley; M. R. Shaw
Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.
Frontiers in Ecology and the Environment | 2009
Jeffrey T. Morisette; Andrew D. Richardson; Alan K. Knapp; Jeremy Isaac Fisher; Eric Graham; John T. Abatzoglou; Bruce E. Wilson; David D. Breshears; Geoffrey M. Henebry; Jonathan M. Hanes; Liang Liang
Phenology is the study of recurring life-cycle events, classic examples being the flowering of plants and animal migration. Phenological responses are increasingly relevant for addressing applied environmental issues. Yet, challenges remain with respect to spanning scales of observation, integrating observations across taxa, and modeling phenological sequences to enable ecological forecasts in light of future climate change. Recent advances that are helping to address these questions include refined landscape-scale phenology estimates from satellite data, advanced, instrument-based approaches for field measurements, and new cyberinfrastructure for archiving and distribution of products. These breakthroughs are improving our understanding in diverse areas, including modeling land-surface exchange, evaluating climate–phenology relationships, and making land-management decisions.