Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda D. Smith is active.

Publication


Featured researches published by Melinda D. Smith.


Nature | 2004

Convergence across biomes to a common rain-use efficiency.

Travis E. Huxman; Melinda D. Smith; Philip A. Fay; Alan K. Knapp; M. Rebecca Shaw; Michael E. Loik; Stanley D. Smith; David T. Tissue; John C. Zak; Jake F. Weltzin; William T. Pockman; Osvaldo E. Sala; Brent M. Haddad; John Harte; George W. Koch; Susan Schwinning; Eric E. Small; David G. Williams

Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUEmax) that is typical of arid ecosystems. RUEmax was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.


BioScience | 2003

Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation

Jake F. Weltzin; Michael E. Loik; Susanne Schwinning; David G. Williams; Philip A. Fay; Brent M. Haddad; John Harte; Travis E. Huxman; Alan K. Knapp; Guanghui Lin; William T. Pockman; Rebecca Shaw; Eric E. Small; Melinda D. Smith; Stanley D. Smith; David T. Tissue; John C. Zak

Abstract Changes in Earths surface temperatures caused by anthropogenic emissions of greenhouse gases are expected to affect global and regional precipitation regimes. Interactions between changing precipitation regimes and other aspects of global change are likely to affect natural and managed terrestrial ecosystems as well as human society. Although much recent research has focused on assessing the responses of terrestrial ecosystems to rising carbon dioxide or temperature, relatively little research has focused on understanding how ecosystems respond to changes in precipitation regimes. Here we review predicted changes in global and regional precipitation regimes, outline the consequences of precipitation change for natural ecosystems and human activities, and discuss approaches to improving understanding of ecosystem responses to changing precipitation. Further, we introduce the Precipitation and Ecosystem Change Research Network (PrecipNet), a new interdisciplinary research network assembled to encourage and foster communication and collaboration across research groups with common interests in the impacts of global change on precipitation regimes, ecosystem structure and function, and the human enterprise.


Ecology | 2007

THE INVASION PARADOX: RECONCILING PATTERN AND PROCESS IN SPECIES INVASIONS

Jason D. Fridley; John J. Stachowicz; Shahid Naeem; Dov F. Sax; Eric W. Seabloom; Melinda D. Smith; Thomas J. Stohlgren; David Tilman; B. Von Holle

The invasion paradox describes the co-occurrence of independent lines of support for both a negative and a positive relationship between native biodiversity and the invasions of exotic species. The paradox leaves the implications of native-exotic species richness relationships open to debate: Are rich native communities more or less susceptible to invasion by exotic species? We reviewed the considerable observational, experimental, and theoretical evidence describing the paradox and sought generalizations concerning where and why the paradox occurs, its implications for community ecology and assembly processes, and its relevance for restoration, management, and policy associated with species invasions. The crux of the paradox concerns positive associations between native and exotic species richness at broad spatial scales, and negative associations at fine scales, especially in experiments in which diversity was directly manipulated. We identified eight processes that can generate either negative or positive native-exotic richness relationships, but none can generate both. As all eight processes have been shown to be important in some systems, a simple general theory of the paradox, and thus of the relationship between diversity and invasibility, is probably unrealistic. Nonetheless, we outline several key issues that help resolve the paradox, discuss the difficult juxtaposition of experimental and observational data (which often ask subtly different questions), and identify important themes for additional study. We conclude that natively rich ecosystems are likely to be hotspots for exotic species, but that reduction of local species richness can further accelerate the invasion of these and other vulnerable habitats.


BioScience | 2008

Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems

Alan K. Knapp; Claus Beier; David D. Briske; Aimée T. Classen; Yiqi Luo; Markus Reichstein; Melinda D. Smith; Stanley D. Smith; Jesse E. Bell; Philip A. Fay; Jana L. Heisler; Steven W. Leavitt; Rebecca A. Sherry; Benjamin Smith; Ensheng Weng

ABSTRACT Amplification of the hydrological cycle as a consequence of global warming is forecast to lead to more extreme intra-annual precipitation regimes characterized by larger rainfall events and longer intervals between events. We present a conceptual framework, based on past investigations and ecological theory, for predicting the consequences of this underappreciated aspect of climate change. We consider a broad range of terrestrial ecosystems that vary in their overall water balance. More extreme rainfall regimes are expected to increase the duration and severity of soil water stress in mesic ecosystems as intervals between rainfall events increase. In contrast, xeric ecosystems may exhibit the opposite response to extreme events. Larger but less frequent rainfall events may result in proportional reductions in evaporative losses in xeric systems, and thus may lead to greater soil water availability. Hydric (wetland) ecosystems are predicted to experience reduced periods of anoxia in response to prolonged intervals between rainfall events. Understanding these contingent effects of ecosystem water balance is necessary for predicting how more extreme precipitation regimes will modify ecosystem processes and alter interactions with related global change drivers.


Science | 2011

Productivity is a poor predictor of plant species richness

Peter B. Adler; Eric W. Seabloom; Elizabeth T. Borer; Helmut Hillebrand; Yann Hautier; Andy Hector; W. Stanley Harpole; Lydia R. O'Halloran; James B. Grace; T. Michael Anderson; Jonathan D. Bakker; Lori A. Biederman; Cynthia S. Brown; Yvonne M. Buckley; Laura B. Calabrese; Chengjin Chu; Elsa E. Cleland; Scott L. Collins; Kathryn L. Cottingham; Michael J. Crawley; Ellen I. Damschen; Kendi F. Davies; Nicole M. DeCrappeo; Philip A. Fay; Jennifer Firn; Paul Frater; Eve I. Gasarch; Daneil S. Gruner; Nicole Hagenah; Janneke Hille Ris Lambers

Standardized sampling from many sites worldwide was used to address an important ecological problem. For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.


Frontiers in Ecology and the Environment | 2011

An integrated conceptual framework for long-term social-ecological research

Scott L. Collins; Stephen R. Carpenter; Scott M. Swinton; Daniel E Orenstein; Daniel L. Childers; Ted L. Gragson; Nancy B. Grimm; J. Morgan Grove; Sharon L. Harlan; Jason P. Kaye; Alan K. Knapp; Gary P. Kofinas; John J. Magnuson; William H. McDowell; John M. Melack; Laura A. Ogden; G. Philip Robertson; Melinda D. Smith; Ali C Whitmer

The global reach of human activities affects all natural ecosystems, so that the environment is best viewed as a social–ecological system. Consequently, a more integrative approach to environmental science, one that bridges the biophysical and social domains, is sorely needed. Although models and frameworks for social–ecological systems exist, few are explicitly designed to guide a long-term interdisciplinary research program. Here, we present an iterative framework, “Press–Pulse Dynamics” (PPD), that integrates the biophysical and social sciences through an understanding of how human behaviors affect “press” and “pulse” dynamics and ecosystem processes. Such dynamics and processes, in turn, influence ecosystem services –thereby altering human behaviors and initiating feedbacks that impact the original dynamics and processes. We believe that research guided by the PPD framework will lead to a more thorough understanding of social–ecological systems and generate the knowledge needed to address pervasive environmental problems.


Nature | 2015

Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes

Forest Isbell; Dylan Craven; John Connolly; Michael Loreau; Bernhard Schmid; Carl Beierkuhnlein; T. Martin Bezemer; Catherine L. Bonin; Helge Bruelheide; Enrica De Luca; Anne Ebeling; John N. Griffin; Qinfeng Guo; Yann Hautier; Andy Hector; Anke Jentsch; Jürgen Kreyling; Vojtěch Lanta; Peter Manning; Sebastian T. Meyer; Akira Mori; Shahid Naeem; Pascal A. Niklaus; H. Wayne Polley; Peter B. Reich; Christiane Roscher; Eric W. Seabloom; Melinda D. Smith; Madhav P. Thakur; David Tilman

It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.


Ecology | 2006

SCALE-DEPENDENT INTERACTION OF FIRE AND GRAZING ON COMMUNITY HETEROGENEITY IN TALLGRASS PRAIRIE

Scott L. Collins; Melinda D. Smith

Natural disturbances affect spatial and temporal heterogeneity in plant communities, but effects vary depending on type of disturbance and scale of analysis. In this study, we examined the effects of fire frequency (1-, 4-, and 20-yr intervals) and grazing by bison on spatial and temporal heterogeneity in species composition in tallgrass prairie plant communities. Compositional heterogeneity was estimated at 10-, 50-, and 200-m2 scales. For each measurement scale, we used the average Euclidean Distance (ED) between samples within a year (2000) to measure spatial heterogeneity and between all time steps (1993-2000) for each sample to measure temporal heterogeneity. The main effects of fire and grazing were scale independent. Spatial and temporal heterogeneity were lowest on annually burned sites and highest on infrequently burned (20-yr) sites at all scales. Grazing reduced spatial heterogeneity and increased temporal heterogeneity at all scales. The rate of community change over time decreased as fire frequency increased at all scales, whereas grazing had no effect on rate of community change over time at any spatial scale. The interactive effects of fire and grazing on spatial and temporal heterogeneity differed with scale. At the 10-m2 scale, grazing increased spatial heterogeneity in annually burned grassland but decreased heterogeneity in less frequently burned areas. At the 50-m2 scale, grazing decreased spatial heterogeneity on 4-yr burns but had no effect at other fire frequencies. At the 10-m scale, grazing increased temporal heterogeneity only on 1- and 20-yr burn sites. Our results show that the individual effects of fire and grazing on spatial and temporal heterogeneity in mesic prairie are scale independent, but the interactive effects of these disturbances on community heterogeneity change with scale of measurement. These patterns reflect the homogenizing impact of fire at all spatial scales, and the different frequency, intensity, and scale of patch grazing by bison in frequently burned vs. infrequently burned areas.


International Journal of Plant Sciences | 2001

PHYSIOLOGICAL AND MORPHOLOGICAL TRAITS OF EXOTIC, INVASIVE EXOTIC, AND NATIVE PLANT SPECIES IN TALLGRASS PRAIRIE

Melinda D. Smith; Alan K. Knapp

We compared 13 traits of invasive exotic, noninvasive exotic, and ecologically similar native species to determine if there are generalizable differences among these groups that relate to persistence and spread of exotic species in tallgrass prairie plant communities. When species were grouped as invasive (two species), noninvasive (five species), and native (six species), no differences were found for the suite of traits examined, likely because of the high variability within and between groups. However, when exotic species, regardless of invasiveness, were compared with the native species, specific leaf area was ca. 40% higher for the exotic species, a result that is consistent with that of other studies. This pattern was also observed for five of seven pairwise comparisons of exotic and native species with similar life history traits. In contrast, total end‐of‐season biomass was as much as three times higher for the native species in five of seven of the native‐exotic species pairs. For other traits, differences between exotic and native species were species‐specific and were generally more numerous for noninvasive than for invasive exotic species pair‐wise comparisons. Thus, contrary to predictions, exotic species capable of successfully invading tallgrass prairie did not differ considerably from native species in most traits related to resource utilization and carbon gain. Moreover, invasive exotic species, those capable of displacing native species and dominating a community, were not distinct for the observed traits from their native counterparts. These results indicate that other traits, such as the ability to respond to resource pulses or herbivory, may explain more effectively why certain invasive species are able to invade these communities aggressively.


Frontiers in Ecology and the Environment | 2013

Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science

Lauchlan H. Fraser; Hugh A. L. Henry; Cameron N. Carlyle; Shannon R. White; Carl Beierkuhnlein; James F. Cahill; Brenda B. Casper; Elsa E. Cleland; Scott L. Collins; Jeffrey S. Dukes; Alan K. Knapp; Eric M. Lind; Ruijun Long; Yiqi Luo; Peter B. Reich; Melinda D. Smith; Marcelo Sternberg; Roy Turkington

There is a growing realization among scientists and policy makers that an increased understanding of todays environmental issues requires international collaboration and data synthesis. Meta-analyses have served this role in ecology for more than a decade, but the different experimental methodologies researchers use can limit the strength of the meta-analytic approach. Considering the global nature of many environmental issues, a new collaborative approach, which we call coordinated distributed experiments (CDEs), is needed that will control for both spatial and temporal scale, and that encompasses large geographic ranges. Ecological CDEs, involving standardized, controlled protocols, have the potential to advance our understanding of general principles in ecology and environmental science.

Collaboration


Dive into the Melinda D. Smith's collaboration.

Top Co-Authors

Avatar

Alan K. Knapp

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin R. Wilcox

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip A. Fay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Kimberly J. La Pierre

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin P. Kirkman

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge