Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deron E. Burkepile is active.

Publication


Featured researches published by Deron E. Burkepile.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Herbivore species richness and feeding complementarity affect community structure and function on a coral reef

Deron E. Burkepile; Mark E. Hay

Consumer effects on prey are well known for cascading through food webs and producing dramatic top-down effects on community structure and ecosystem function. Bottom-up effects of prey (primary producer) biodiversity are also well known. However, the role of consumer diversity in affecting community structure or ecosystem function is not well understood. Here, we show that herbivore species richness can be critical for maintaining the structure and function of coral reefs. In two experiments over 2 years, we constructed large cages enclosing single herbivore species, equal densities of mixed species of herbivores, or excluding herbivores and assessed effects on both seaweeds and corals. When compared with single-herbivore treatments, mixed-herbivore treatments lowered macroalgal abundance by 54–76%, enhanced cover of crustose coralline algae (preferred recruitment sites for corals) by 52–64%, increased coral cover by 22%, and prevented coral mortality. Complementary feeding by herbivorous fishes drove the herbivore richness effects, because macroalgae were unable to effectively deter fishes with different feeding strategies. Maintaining herbivore species richness appears critical for preserving coral reefs, because complementary feeding by diverse herbivores produces positive, but indirect, effects on corals, the foundation species for the ecosystem.


PLOS ONE | 2010

Impact of Herbivore Identity on Algal Succession and Coral Growth on a Caribbean Reef

Deron E. Burkepile; Mark E. Hay

Background Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances. Methodology and Principal Findings In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus bahianus); in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus). On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae. Significance This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species-specific effects of herbivorous fishes suggest that a species-rich herbivore fauna can be critical in providing the resilience that reefs need for recovery from common disturbances such as coral bleaching and storm damage.


Nature Communications | 2016

Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales

Jesse Zaneveld; Deron E. Burkepile; Andrew A. Shantz; Catharine E. Pritchard; Ryan McMinds; J. Payet; Rory M Welsh; Adrienne M. S. Correa; Nathan P. Lemoine; Stephanie M. Rosales; Corinne Fuchs; Jeffrey A. Maynard; Rebecca Vega Thurber

Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.


PLOS ONE | 2012

Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides.

Rebecca Vega Thurber; Deron E. Burkepile; Adrienne M. S. Correa; Andrew R. Thurber; Andrew A. Shantz; Rory M Welsh; Catharine E. Pritchard; Stephanie M. Rosales

With the continued and unprecedented decline of coral reefs worldwide, evaluating the factors that contribute to coral demise is of critical importance. As coral cover declines, macroalgae are becoming more common on tropical reefs. Interactions between these macroalgae and corals may alter the coral microbiome, which is thought to play an important role in colony health and survival. Together, such changes in benthic macroalgae and in the coral microbiome may result in a feedback mechanism that contributes to additional coral cover loss. To determine if macroalgae alter the coral microbiome, we conducted a field-based experiment in which the coral Porites astreoides was placed in competition with five species of macroalgae. Macroalgal contact increased variance in the coral-associated microbial community, and two algal species significantly altered microbial community composition. All macroalgae caused the disappearance of a γ-proteobacterium previously hypothesized to be an important mutualist of P. astreoides. Macroalgal contact also triggered: 1) increases or 2) decreases in microbial taxa already present in corals, 3) establishment of new taxa to the coral microbiome, and 4) vectoring and growth of microbial taxa from the macroalgae to the coral. Furthermore, macroalgal competition decreased coral growth rates by an average of 36.8%. Overall, this study found that competition between corals and certain species of macroalgae leads to an altered coral microbiome, providing a potential mechanism by which macroalgae-coral interactions reduce coral health and lead to coral loss on impacted reefs.


Scientific Reports | 2013

Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem

Deron E. Burkepile; Jacob E. Allgeier; Andrew A. Shantz; Catharine E. Pritchard; Nathan P. Lemoine; Laura H. Bhatti; Craig A. Layman

On coral reefs, fishes can facilitate coral growth via nutrient excretion; however, as coral abundance declines, these nutrients may help facilitate increases in macroalgae. By combining surveys of reef communities with bioenergetics modeling, we showed that fish excretion supplied 25 times more nitrogen to forereefs in the Florida Keys, USA, than all other biotic and abiotic sources combined. One apparent result was a positive relationship between fish excretion and macroalgal cover on these reefs. Herbivore biomass also showed a negative relationship with macroalgal cover, suggesting strong interactions of top-down and bottom-up forcing. Nutrient supply by fishes also showed a negative correlation with juvenile coral density, likely mediated by competition between macroalgae and corals, suggesting that fish excretion may hinder coral recovery following large-scale coral loss. Thus, the impact of nutrient supply by fishes may be context-dependent and reinforce either coral-dominant or coral-depauperate reef communities depending on initial community states.


Ecology | 2014

Plant community response to loss of large herbivores differs between North American and South African savanna grasslands

Sally E. Koerner; Deron E. Burkepile; Richard W.S. Fynn; Catherine E. Burns; Stephanie Eby; Navashni Govender; Nicole Hagenah; Katherine J. Matchett; Dave I. Thompson; Kevin R. Wilcox; Scott L. Collins; Kevin P. Kirkman; Alan K. Knapp; Melinda D. Smith

Herbivory and fire shape plant community structure in grass-dominated ecosystems, but these disturbance regimes are being altered around the world. To assess the consequences of such alterations, we excluded large herbivores for seven years from mesic savanna grasslands sites burned at different frequencies in North America (Konza Prairie Biological Station, Kansas, USA) and South Africa (Kruger National Park). We hypothesized that the removal of a single grass-feeding herbivore from Konza would decrease plant community richness and shift community composition due to increased dominance by grasses. Similarly, we expected grass dominance to increase at Kruger when removing large herbivores, but because large herbivores are more diverse, targeting both grasses and forbs, at this study site, the changes due to herbivore removal would be muted. After seven years of large-herbivore exclusion, richness strongly decreased and community composition changed at Konza, whereas little change was evident at Kruger. We found that this divergence in response was largely due to differences in the traits and numbers of dominant grasses between the study sites rather than the predicted differences in herbivore assemblages. Thus, the diversity of large herbivores lost may be less important in determining plant community dynamics than the functional traits of the grasses that dominate mesic, disturbance-maintained savanna grasslands.


PeerJ | 2014

Variable effects of temperature on insect herbivory

Nathan P. Lemoine; Deron E. Burkepile; John D. Parker

Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.


Oecologia | 2014

Differing nutritional constraints of consumers across ecosystems

Nathan P. Lemoine; Sean T. Giery; Deron E. Burkepile

Stoichiometric mismatches between resources and consumers may drive a number of important ecological interactions, such as predation and herbivory. Such mismatches in nitrogen (N) or phosphorus (P) content between resources and consumers have furthered our understanding of consumer behavior and growth patterns in aquatic systems. However, stoichiometric data for multiple consumers from the same community are lacking in terrestrial systems. Here, we present the results of a study designed to characterize nutritional constraints within a terrestrial arthropod community. In order to place our results in a broader context, we compared our data on resource–consumer stoichiometry to those of stream and lake ecosystems. We found that N and P varied among trophic levels, and that high N:P content of herbivores suggests that herbivores might experience strong N-limitation. However, incredibly low P-content of plant foliage leads to potential P-limitation in herbivores that is nearly as strong as potential N-limitation. Moreover, arthropod predators may also be strongly P-limited. In fact, potential nutrient limitation of terrestrial herbivores in our study is similar to nutrient limitation from streams and lakes, suggesting that similar nutritional constraints may be operating across all three study systems. Importantly, our data suggest that consumers in lakes experience a trade-off between N- and P-limitation, while terrestrial consumers experience simultaneous strengthening or weakening of N- and P-limitation. We suggest that P may be overlooked as an important limiting nutrient in terrestrial ecosystems.


Ecology | 2014

Context-dependent effects of nutrient loading on the coral-algal mutualism.

Andrew A. Shantz; Deron E. Burkepile

Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.


Ecosphere | 2013

Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom‐up and top‐down forces

Deron E. Burkepile; Catherine E. Burns; Craig J. Tambling; Elizabeth Amendola; Greg M. Buis; Navashini Govender; Victoria Nelson; Dave I. Thompson; Andrew D. Zinn; Melinda D. Smith

This research was supported by the National Science Foundation of the United States (DEB 0516094 to A. Knapp and DEB 0516145 to M. Smith). Support from the James S. McDonnell Foundation and a United States National Science Foundation Grant (DEB 0090323) to W. Getz at the University of California, Berkeley funded the collars and field component on lion predation. D. Burkepile and C. Burns were supported, in part, by the Brown Postdoctoral Research Fellowship at Yale University.

Collaboration


Dive into the Deron E. Burkepile's collaboration.

Top Co-Authors

Avatar

Andrew A. Shantz

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Parker

Smithsonian Environmental Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan K. Knapp

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin P. Kirkman

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Adam

University of California

View shared research outputs
Top Co-Authors

Avatar

Dave I. Thompson

University of KwaZulu-Natal

View shared research outputs
Researchain Logo
Decentralizing Knowledge