Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan T. Henley is active.

Publication


Featured researches published by Alan T. Henley.


Cancer Research | 2007

Pharmacologic Characterization of a Potent Inhibitor of Class I Phosphatidylinositide 3-Kinases

Florence I. Raynaud; Suzanne A. Eccles; Paul A. Clarke; Angela Hayes; Bernard Nutley; Sonia Alix; Alan T. Henley; Zahida Ahmad; Sandrine Guillard; Lynn Bjerke; Lloyd R. Kelland; Melanie Valenti; Lisa Patterson; Sharon Gowan; Alexis de Haven Brandon; Masahiko Hayakawa; Hiroyuki Kaizawa; Tomonubu Koizumi; Takahide Ohishi; Sonal Patel; Nahid Saghir; Peter J. Parker; M D Waterfield; Paul Workman

Extensive evidence implicates activation of the lipid phosphatidylinositide 3-kinase (PI3K) pathway in the genesis and progression of various human cancers. PI3K inhibitors thus have considerable potential as molecular cancer therapeutics. Here, we detail the pharmacologic properties of a prototype of a new series of inhibitors of class I PI3K. PI103 is a potent inhibitor with low IC50 values against recombinant PI3K isoforms p110alpha (2 nmol/L), p110beta (3 nmol/L), p110delta (3 nmol/L), and p110gamma (15 nmol/L). PI103 also inhibited TORC1 by 83.9% at 0.5 micromol/L and exhibited an IC50 of 14 nmol/L against DNA-PK. A high degree of selectivity for the PI3K family was shown by the lack of activity of PI103 in a panel of 70 protein kinases. PI103 potently inhibited proliferation and invasion of a wide variety of human cancer cells in vitro and showed biomarker modulation consistent with inhibition of PI3K signaling. PI103 was extensively metabolized, but distributed rapidly to tissues and tumors. This resulted in tumor growth delay in eight different human cancer xenograft models with various PI3K pathway abnormalities. Decreased phosphorylation of AKT was observed in U87MG gliomas, consistent with drug levels achieved. We also showed inhibition of invasion in orthotopic breast and ovarian cancer xenograft models and obtained evidence that PI103 has antiangiogenic potential. Despite its rapid in vivo metabolism, PI103 is a valuable tool compound for exploring the biological function of class I PI3K and importantly represents a lead for further optimization of this novel class of targeted molecular cancer therapeutic.


Molecular Cancer Therapeutics | 2009

Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941

Florence I. Raynaud; Suzanne A. Eccles; Sonal Patel; Sonia Alix; Gary Box; Irina Chuckowree; Adrian Folkes; Sharon Gowan; Alexis de Haven Brandon; Francesca Di Stefano; Angela Hayes; Alan T. Henley; Letitia Lensun; Giles Pergl-Wilson; Anthony Robson; Nahid Saghir; Alexander Zhyvoloup; Edward McDonald; Peter Sheldrake; Stephen J. Shuttleworth; Melanie Valenti; Nan Chi Wan; Paul A. Clarke; Paul Workman

The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110α with IC50 ≤ 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% antiproliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials. [Mol Cancer Ther 2009;8(7):1725–38] [Mol Cancer Ther 2009;8(7):1725–38]


Journal of Medicinal Chemistry | 2010

Discovery of 4-Amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides As Selective, Orally Active Inhibitors of Protein Kinase B (Akt)

Tatiana McHardy; John Caldwell; Kwai-Ming Cheung; Lisa J. Hunter; Kevin Taylor; Martin G. Rowlands; Ruth Ruddle; Alan T. Henley; Alexis de Haven Brandon; Melanie Valenti; Thomas G. Davies; Lynsey Fazal; Lisa Seavers; Florence I. Raynaud; Suzanne A. Eccles; G. Wynne Aherne; Michelle D. Garrett; Ian Collins

Protein kinase B (PKB or Akt) is an important component of intracellular signaling pathways regulating growth and survival. Signaling through PKB is frequently deregulated in cancer, and inhibitors of PKB therefore have potential as antitumor agents. The optimization of lipophilic substitution within a series of 4-benzyl-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amines provided ATP-competitive, nanomolar inhibitors with up to 150-fold selectivity for inhibition of PKB over the closely related kinase PKA. Although active in cellular assays, compounds containing 4-amino-4-benzylpiperidines underwent metabolism in vivo, leading to rapid clearance and low oral bioavailability. Variation of the linker group between the piperidine and the lipophilic substituent identified 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as potent and orally bioavailable inhibitors of PKB. Representative compounds modulated biomarkers of signaling through PKB in vivo and strongly inhibited the growth of human tumor xenografts in nude mice at well-tolerated doses.


Molecular Cancer Therapeutics | 2006

Preclinical pharmacokinetics and metabolism of a novel diaryl pyrazole resorcinol series of heat shock protein 90 inhibitors

Nicola F. Smith; Angela Hayes; Karen James; Bernard Nutley; Edward McDonald; Alan T. Henley; Brian W. Dymock; Martin J. Drysdale; Florence I. Raynaud; Paul Workman

CCT018159 was recently identified as a novel inhibitor of heat shock protein (Hsp) 90, a promising target for cancer therapy. Pharmacokinetic and metabolic properties are likely to be important for efficacy and need to be optimized during drug development. Here, we define the preclinical metabolism and pharmacokinetics of CCT018159 and some early derivatives. In addition, we assess in vitro metabolic stability screening and in vivo cassette dosing (simultaneous administration of several compounds to a single animal) as approaches to investigate these compounds. The plasma clearance following individual i.v. administration to mice was rapid (0.128–0.816 L/h), exceeding hepatic blood flow. For CCT066950 and CCT066952, this could be attributed in part to extensive (>80%) blood cell binding. Oral bioavailability ranged from 1.8% to 29.6%. Tissue distribution of CCT066952 was rapid and moderate, and renal excretion of the compounds was minimal (<1% of dose excreted). Compounds underwent rapid glucuronidation both in vivo and following incubation with mouse liver microsomes. However, whereas CCT066965 was metabolized to the greatest extent in vitro, this compound displayed the slowest plasma clearance. The rank order of the compounds from the highest to lowest area under the curve was the same following discrete and cassette dosing. Furthermore, pharmacokinetic variables were similar whether the compounds were dosed alone or in combination. We conclude that the pharmacokinetics of CCT018159 are complex. Cassette dosing is currently the best option available to assess the pharmacokinetics of this promising series of compounds in relatively high throughput and is now being applied to identify compounds with optimal pharmacokinetic properties during structural analogue synthesis. [Mol Cancer Ther 2006;5(6):1628–37]


Journal of Medicinal Chemistry | 2013

Structure-based design of orally bioavailable 1H-pyrrolo[3,2-c]pyridine inhibitors of mitotic kinase monopolar spindle 1 (MPS1).

Sébastien Naud; Isaac M. Westwood; Amir Faisal; Peter Sheldrake; Vassilios Bavetsias; Butrus Atrash; Kwai-Ming J. Cheung; Manjuan Liu; Angela Hayes; Jessica Schmitt; Amy Wood; Vanessa Choi; Kathy Boxall; Grace Mak; Mark Gurden; Melanie Valenti; Alexis de Haven Brandon; Alan T. Henley; Ross Baker; Craig McAndrew; Berry Matijssen; Rosemary Burke; Swen Hoelder; Suzanne A. Eccles; Florence I. Raynaud; Spiros Linardopoulos; Rob L. M. van Montfort; Julian Blagg

The protein kinase MPS1 is a crucial component of the spindle assembly checkpoint signal and is aberrantly overexpressed in many human cancers. MPS1 is one of the top 25 genes overexpressed in tumors with chromosomal instability and aneuploidy. PTEN-deficient breast tumor cells are particularly dependent upon MPS1 for their survival, making it a target of significant interest in oncology. We report the discovery and optimization of potent and selective MPS1 inhibitors based on the 1H-pyrrolo[3,2-c]pyridine scaffold, guided by structure-based design and cellular characterization of MPS1 inhibition, leading to 65 (CCT251455). This potent and selective chemical tool stabilizes an inactive conformation of MPS1 with the activation loop ordered in a manner incompatible with ATP and substrate-peptide binding; it displays a favorable oral pharmacokinetic profile, shows dose-dependent inhibition of MPS1 in an HCT116 human tumor xenograft model, and is an attractive tool compound to elucidate further the therapeutic potential of MPS1 inhibition.


Journal of Medicinal Chemistry | 2013

Aurora Isoform Selectivity: Design and Synthesis of Imidazo[4,5-B]Pyridine Derivatives as Highly Selective Inhibitors of Aurora-A Kinase in Cells.

Vassilios Bavetsias; Amir Faisal; Simon Crumpler; Nathan Brown; Magda N. Kosmopoulou; Amar Joshi; Butrus Atrash; Yolanda Pérez-Fuertes; Jessica Schmitt; Katherine J. Boxall; Rosemary Burke; Chongbo Sun; Sian Avery; Katherine Bush; Alan T. Henley; Florence I. Raynaud; Paul Workman; Richard Bayliss; Spiros Linardopoulos; Julian Blagg

Aurora-A differs from Aurora-B/C at three positions in the ATP-binding pocket (L215, T217, and R220). Exploiting these differences, crystal structures of ligand–Aurora protein interactions formed the basis of a design principle for imidazo[4,5-b]pyridine-derived Aurora-A-selective inhibitors. Guided by a computational modeling approach, appropriate C7-imidazo[4,5-b]pyridine derivatization led to the discovery of highly selective inhibitors, such as compound 28c, of Aurora-A over Aurora-B. In HCT116 human colon carcinoma cells, 28c and 40f inhibited the Aurora-A L215R and R220K mutants with IC50 values similar to those seen for the Aurora-A wild type. However, the Aurora-A T217E mutant was significantly less sensitive to inhibition by 28c and 40f compared to the Aurora-A wild type, suggesting that the T217 residue plays a critical role in governing the observed isoform selectivity for Aurora-A inhibition. These compounds are useful small-molecule chemical tools to further explore the function of Aurora-A in cells.


Journal of Medicinal Chemistry | 2015

Discovery of Potent, Orally Bioavailable, Small-Molecule Inhibitors of WNT Signaling from a Cell-Based Pathway Screen

Aurélie Mallinger; Simon Crumpler; Mark Pichowicz; Dennis Waalboer; Mark Stubbs; Olajumoke Adeniji-Popoola; Bozena Wood; Elizabeth L. Smith; Ching Thai; Alan T. Henley; Katrin Georgi; William Court; Steve Hobbs; Gary Box; Maria-Jesus Ortiz-Ruiz; Melanie Valenti; Alexis de Haven Brandon; Robert TePoele; Birgitta Leuthner; Paul Workman; Wynne Aherne; Oliver Poeschke; Trevor Clive Dale; Dirk Wienke; Christina Esdar; Felix Rohdich; Florence I. Raynaud; Paul A. Clarke; Suzanne A. Eccles; Frank Stieber

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine–piperidine bond of 9 by small-molecule X-ray crystallography. Medicinal chemistry optimization to maintain this twisted conformation, cognisant of physicochemical properties likely to maintain good cell permeability, led to 74 (CCT251545), a potent small-molecule inhibitor of WNT signaling with good oral pharmacokinetics. We demonstrate inhibition of WNT pathway activity in a solid human tumor xenograft model with evidence for tumor growth inhibition following oral dosing. This work provides a successful example of hypothesis-driven medicinal chemistry optimization from a singleton hit against a cell-based pathway assay without knowledge of the biochemical target.


Molecular Cancer Therapeutics | 2011

Preclinical Pharmacology, Antitumor Activity, and Development of Pharmacodynamic Markers for the Novel, Potent AKT Inhibitor CCT128930

Timothy A. Yap; Michael I. Walton; Lisa-Jane K. Hunter; Melanie Valenti; Alexis de Haven Brandon; Paul D. Eve; Ruth Ruddle; Simon P. Heaton; Alan T. Henley; Lisa Pickard; Gowri Vijayaraghavan; John Caldwell; Neil Thomas Thompson; Wynne Aherne; Florence I. Raynaud; Suzanne A. Eccles; Paul Workman; Ian Collins; Michelle D. Garrett

AKT is frequently deregulated in cancer, making it an attractive anticancer drug target. CCT128930 is a novel ATP-competitive AKT inhibitor discovered using fragment- and structure-based approaches. It is a potent, advanced lead pyrrolopyrimidine compound exhibiting selectivity for AKT over PKA, achieved by targeting a single amino acid difference. CCT128930 exhibited marked antiproliferative activity and inhibited the phosphorylation of a range of AKT substrates in multiple tumor cell lines in vitro, consistent with AKT inhibition. CCT128930 caused a G1 arrest in PTEN-null U87MG human glioblastoma cells, consistent with AKT pathway blockade. Pharmacokinetic studies established that potentially active concentrations of CCT128930 could be achieved in human tumor xenografts. Furthermore, CCT128930 also blocked the phosphorylation of several downstream AKT biomarkers in U87MG tumor xenografts, indicating AKT inhibition in vivo. Antitumor activity was observed with CCT128930 in U87MG and HER2-positive, PIK3CA-mutant BT474 human breast cancer xenografts, consistent with its pharmacokinetic and pharmacodynamic properties. A quantitative immunofluorescence assay to measure the phosphorylation and total protein expression of the AKT substrate PRAS40 in hair follicles is presented. Significant decreases in pThr246 PRAS40 occurred in CCT128930-treated mouse whisker follicles in vivo and human hair follicles treated ex vivo, with minimal changes in total PRAS40. In conclusion, CCT128930 is a novel, selective, and potent AKT inhibitor that blocks AKT activity in vitro and in vivo and induces marked antitumor responses. We have also developed a novel biomarker assay for the inhibition of AKT in human hair follicles, which is currently being used in clinical trials. Mol Cancer Ther; 10(2); 360–71. ©2010 AACR.


Journal of Medicinal Chemistry | 2012

Optimization of Imidazo[4,5-B]Pyridine-Based Kinase Inhibitors: Identification of a Dual Flt3/Aurora Kinase Inhibitor as an Orally Bioavailable Preclinical Development Candidate for the Treatment of Acute Myeloid Leukemia.

Vassilios Bavetsias; Simon Crumpler; Chongbo Sun; Sian Avery; Butrus Atrash; Amir Faisal; Andrew S. Moore; Magda N. Kosmopoulou; Nathan Brown; Peter Sheldrake; Katherine Bush; Alan T. Henley; Gary Box; Melanie Valenti; Alexis de Haven Brandon; Florence I. Raynaud; Paul Workman; Suzanne A. Eccles; Richard Bayliss; Spiros Linardopoulos; Julian Blagg

Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children.


Oncotarget | 2016

The clinical development candidate CCT245737 is an orally active CHK1 inhibitor with preclinical activity in RAS mutant NSCLC and Eµ-MYC driven B-cell lymphoma

Mike I. Walton; Paul D. Eve; Angela Hayes; Alan T. Henley; Melanie Valenti; Alexis de Haven Brandon; Gary Box; Kathy Boxall; M. Tall; Karen E Swales; Thomas P. Matthews; Tatiana McHardy; Michael Lainchbury; James Osborne; Jill E. Hunter; Neil D. Perkins; G. Wynne Aherne; John C. Reader; Florence I. Raynaud; Suzanne A. Eccles; Ian Collins; Michelle D. Garrett

CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition.

Collaboration


Dive into the Alan T. Henley's collaboration.

Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Angela Hayes

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Melanie Valenti

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Suzanne A. Eccles

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Box

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Julian Blagg

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Lisa O’Fee

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Rosemary Burke

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge