Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alan W. Thomas is active.

Publication


Featured researches published by Alan W. Thomas.


The Lancet | 2004

A large focus of naturally acquired Plasmodium knowlesi infections in human beings.

Balbir Singh; Lee Kim Sung; Asmad Matusop; Anand Radhakrishnan; Sunita S. G. Shamsul; Janet Cox-Singh; Alan W. Thomas; David J. Conway

BACKGROUND About a fifth of malaria cases in 1999 for the Kapit division of Malaysian Borneo had routinely been identified by microscopy as Plasmodium malariae, although these infections appeared atypical and a nested PCR assay failed to identify P malariae DNA. We aimed to investigate whether such infections could be attributable to a variant form of P malariae or a newly emergent Plasmodium species. METHODS We took blood samples from 208 people with malaria in the Kapit division between March, 2000, and November, 2002. The small subunit ribosomal RNA and the circumsporozoite protein genes were sequenced for eight isolates that had been microscopically identified as P malariae. All blood samples were characterised with a genus-specific and species-specific nested PCR assay together with newly designed P knowlesi-specific primers. FINDINGS All DNA sequences were phylogenetically indistinguishable from those of P knowlesi, a malaria parasite of long-tailed macaque monkeys, but were significantly different from other malaria parasite species. By PCR assay, 120 (58%) of 208 people with malaria tested positive for P knowlesi, whereas none was positive for P malariae. P knowlesi parasites in human erythrocytes were difficult to distinguish from P malariae by microscopy. Most of the P knowlesi infections were in adults and we did not note any clustering of cases within communities. P knowlesi infections were successfully treated with chloroquine and primaquine. INTERPRETATION Naturally acquired P knowlesi infections, misdiagnosed by microscopy mainly as P malariae, accounted for over half of all malaria cases in our study. Morphological similarities between P knowlesi and P malariae necessitate the use of molecular methods for correct identification. Further work is needed to determine whether human P knowlesi infections in the Kapit division are acquired from macaque monkeys or whether a host switch to human beings has occurred.


Journal of Biological Chemistry | 2004

A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites

Olivier Silvie; Jean-François Franetich; Markus S. Mueller; Anthony Siau; Myriam Bodescot; Eric Rubinstein; Laurent Hannoun; Yupin Charoenvit; Clemens H. M. Kocken; Alan W. Thomas; Geert-Jan van Gemert; Robert W. Sauerwein; Michael J. Blackman; Robin F. Anders; Gerd Pluschke; Dominique Mazier

Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.


Infection and Immunity | 2008

Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria.

Faith Osier; Gregory Fegan; Spencer D. Polley; Linda M. Murungi; Federica Verra; Kevin K. A. Tetteh; Brett Lowe; Tabitha W. Mwangi; Peter C. Bull; Alan W. Thomas; David R. Cavanagh; Jana S. McBride; David E. Lanar; Margaret J. Mackinnon; David J. Conway; Kevin Marsh

ABSTRACT Individuals living in areas where malaria is endemic are repeatedly exposed to many different malaria parasite antigens. Studies on naturally acquired antibody-mediated immunity to clinical malaria have largely focused on the presence of responses to individual antigens and their associations with decreased morbidity. We hypothesized that the breadth (number of important targets to which antibodies were made) and magnitude (antibody level measured in a random serum sample) of the antibody response were important predictors of protection from clinical malaria. We analyzed naturally acquired antibodies to five leading Plasmodium falciparum merozoite-stage vaccine candidate antigens, and schizont extract, in Kenyan children monitored for uncomplicated malaria for 6 months (n = 119). Serum antibody levels to apical membrane antigen 1 (AMA1) and merozoite surface protein antigens (MSP-1 block 2, MSP-2, and MSP-3) were inversely related to the probability of developing malaria, but levels to MSP-119 and erythrocyte binding antigen (EBA-175) were not. The risk of malaria was also inversely associated with increasing breadth of antibody specificities, with none of the children who simultaneously had high antibody levels to five or more antigens experiencing a clinical episode (17/119; 15%; P = 0.0006). Particular combinations of antibodies (AMA1, MSP-2, and MSP-3) were more strongly predictive of protection than others. The results were validated in a larger, separate case-control study whose end point was malaria severe enough to warrant hospital admission (n = 387). These findings suggest that under natural exposure, immunity to malaria may result from high titers antibodies to multiple antigenic targets and support the idea of testing combination blood-stage vaccines optimized to induce similar antibody profiles.


Trends in Parasitology | 2008

Apical membrane antigen 1: a malaria vaccine candidate in review

Edmond J. Remarque; Bart W. Faber; Clemens H. M. Kocken; Alan W. Thomas

Apical membrane antigen 1 (AMA1) is a micronemal protein of apicomplexan parasites that appears to be essential during the invasion of host cells. Immune responses to Plasmodium AMA1 can have profound parasite-inhibitory effects, both as measured in vitro and in animal challenge models, suggesting AMA1 as a potential vaccine component. However, AMA1 is polymorphic, probably as a result of immune selection operating on an important target of naturally occurring immunity. The current understanding of AMA1 will be presented, particularly in relation to the vaccine potential of AMA1 and the approaches being taken towards clinical development.


Infection and Immunity | 2004

Apical Membrane Antigen 1, a Major Malaria Vaccine Candidate, Mediates the Close Attachment of Invasive Merozoites to Host Red Blood Cells

G. H. Mitchell; Alan W. Thomas; Gabriele Margos; Anton R. Dluzewski; L. H. Bannister

ABSTRACT Apical membrane antigen 1 (AMA-1) of Plasmodium merozoites is established as a candidate molecule for inclusion in a human malaria vaccine and is strongly conserved in the genus. We have investigated its function in merozoite invasion by incubating Plasmodium knowlesi merozoites with red cells in the presence of a previously described rat monoclonal antibody (MAb R31C2) raised against an invasion-inhibitory epitope of P. knowlesi AMA-1 and then fixing the material for ultrastructural analysis. We have found that the random, initial, long-range (12 nm) contact between merozoites and red cells occurs normally in the presence of the antibody, showing that AMA-1 plays no part in this stage of attachment. Instead, inhibited merozoites fail to reorientate, so they do not bring their apices to bear on the red cell surface and do not make close junctional apical contact. We conclude that AMA-1 may be directly responsible for reorientation or that the molecule may initiate the junctional contact, which is then presumably dependent on Duffy binding proteins for its completion.


Infection and Immunity | 2002

High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion.

Clemens H. M. Kocken; Chrislaine Withers-Martinez; Martin A. Dubbeld; Annemarie van der Wel; Fiona Hackett; Michael J. Blackman; Alan W. Thomas

ABSTRACT Apical membrane antigen 1 (AMA-1) is a highly promising malaria blood-stage vaccine candidate that has induced protection in rodent and nonhuman primate models of malaria. Authentic conformation of the protein appears to be essential for the induction of parasite-inhibitory antibody responses. Here we have developed a synthetic gene with adapted codon usage to allow expression of Plasmodium falciparum FVO strain AMA-1 (PfAMA-1) in Pichia pastoris. In addition, potential N-glycosylation sites were changed, exploiting the lack of conservation of these sites in Plasmodium, to obtain high-level secretion of a homogeneous product, suitable for scale-up according to current good manufacturing procedures. Purified PfAMA-1 displayed authentic antigenic properties, indicating that the amino acid changes had no deleterious effect on the conformation of the protein. High-titer antibodies, raised in rabbits, reacted strongly with homologous and heterologous P. falciparum by immunofluorescence. In addition, purified immunoglobulin G from immunized animals strongly inhibited invasion of red blood cells by homologous and, to a somewhat lesser extent, heterologous P. falciparum.


Nature Genetics | 2007

Genome variation and evolution of the malaria parasite Plasmodium falciparum

Daniel C. Jeffares; Arnab Pain; Andrew Berry; Anthony V Cox; James Stalker; Catherine E. Ingle; Alan W. Thomas; Michael A. Quail; Kyle Siebenthall; Anne-Catrin Uhlemann; Sue Kyes; Sanjeev Krishna; Chris Newbold; Emmanouil T. Dermitzakis; Matthew Berriman

Infections with the malaria parasite Plasmodium falciparum result in more than 1 million deaths each year worldwide. Deciphering the evolutionary history and genetic variation of P. falciparum is critical for understanding the evolution of drug resistance, identifying potential vaccine candidates and appreciating the effect of parasite variation on prevalence and severity of malaria in humans. Most studies of natural variation in P. falciparum have been either in depth over small genomic regions (up to the size of a small chromosome) or genome wide but only at low resolution. In an effort to complement these studies with genome-wide data, we undertook shotgun sequencing of a Ghanaian clinical isolate (with fivefold coverage), the IT laboratory isolate (with onefold coverage) and the chimpanzee parasite P. reichenowi (with twofold coverage). We compared these sequences with the fully sequenced P. falciparum 3D7 isolate genome. We describe the most salient features of P. falciparum polymorphism and adaptive evolution with relation to gene function, transcript and protein expression and cellular localization. This analysis uncovers the primary evolutionary changes that have occurred since the P. falciparum–P. reichenowi speciation and changes that are occurring within P. falciparum.NOTE: In the original version of this paper, the authors failed to acknowledge that sequencing of the P. falciparum IT laboratory isolate was funded by a European Union 6th Framework Program grant to the BioMalPar Consortium (contract number LSHP-LT-2004-503578). This error has been corrected in the PDF version of the article.


PLOS Pathogens | 2011

The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites

Mauld M Lamarque; Sébastien Besteiro; Julien Papoin; Magali Roques; Brigitte Vulliez-Le Normand; Juliette Morlon-Guyot; Jean-François Dubremetz; Sylvain Fauquenoy; Stanislas Tomavo; Bart Bw Faber; Clemens Ch Kocken; Alan W. Thomas; Martin J. Boulanger; Graham Ga Bentley; Maryse Lebrun

Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.


PLOS ONE | 2009

MVA.85A Boosting of BCG and an Attenuated, phoP Deficient M. tuberculosis Vaccine Both Show Protective Efficacy Against Tuberculosis in Rhesus Macaques

Frank A. W. Verreck; Richard A.W. Vervenne; Ivanela Kondova; Klaas W. van Kralingen; Edmond J. Remarque; Gerco Braskamp; Nicole van der Werff; Ariena Kersbergen; Tom H. M. Ottenhoff; Peter J. Heidt; Sarah C. Gilbert; Brigitte Gicquel; Adrian V. S. Hill; Carlos Martín; Helen McShane; Alan W. Thomas

Background Continuous high global tuberculosis (TB) mortality rates and variable vaccine efficacy of Mycobacterium bovis Bacille Calmette-Guérin (BCG) motivate the search for better vaccine regimes. Relevant models are required to downselect the most promising vaccines entering clinical efficacy testing and to identify correlates of protection. Methods and Findings Here, we evaluated immunogenicity and protection against Mycobacterium tuberculosis in rhesus monkeys with two novel strategies: BCG boosted by modified vaccinia virus Ankara expressing antigen 85A (MVA.85A), and attenuated M. tuberculosis with a disrupted phoP gene (SO2) as a single-dose vaccine. Both strategies were well tolerated, and immunogenic as evidenced by induction of specific IFNγ responses. Antigen 85A-specific IFNγ secretion was specifically increased by MVA.85A boosting. Importantly, both MVA.85A and SO2 treatment significantly reduced pathology and chest X-ray scores upon infectious challenge with M. tuberculosis Erdman strain. MVA.85A and SO2 treatment also showed reduced average lung bacterial counts (1.0 and 1.2 log respectively, compared with 0.4 log for BCG) and significant protective effect by reduction in C-reactive protein levels, body weight loss, and decrease of erythrocyte-associated hematologic parameters (MCV, MCH, Hb, Ht) as markers of inflammatory infection, all relative to non-vaccinated controls. Lymphocyte stimulation revealed Ag85A-induced IFNγ levels post-infection as the strongest immunocorrelate for protection (spearmans rho: −0.60). Conclusions Both the BCG/MVA.85A prime-boost regime and the novel live attenuated, phoP deficient TB vaccine candidate SO2 showed significant protective efficacy by various parameters in rhesus macaques. Considering the phylogenetic relationship between macaque and man and the similarity in manifestations of TB disease, these data support further development of these primary and combination TB vaccine candidates.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Divergent effect of bacillus Calmette–Guérin (BCG) vaccination on Mycobacterium tuberculosis infection in highly related macaque species: Implications for primate models in tuberculosis vaccine research

J. A. M. Langermans; Peter Andersen; Dick van Soolingen; Richard A.W. Vervenne; Patrice A. Frost; Tridia van der Laan; Laurens A. H. van Pinxteren; Jan van den Hombergh; Saskia Kroon; Inge Peekel; Sandrine Florquin; Alan W. Thomas

Despite the widespread use of bacillus Calmette–Guérin vaccination, Mycobacterium tuberculosis infection remains globally the leading cause of death from a single infectious disease. The complicated and often protracted dynamics of infection and disease make clinical trials to test new tuberculosis vaccines extremely complex. Preclinical selection of only the most promising candidates is therefore essential. Because macaque monkeys develop a disease very similar to humans, they have potential to provide important information in addition to small animal models. To assess the relative merits of rhesus and cynomolgus monkeys as screens for tuberculosis vaccines, we compared the efficacy of bacillus Calmette–Guérin vaccination and the course of infection in both species. Unvaccinated rhesus and cynomolgus monkeys both developed progressive disease with high levels of C-reactive protein, M. tuberculosis-specific IgG, and extensive pathology including cavitation and caseous necrosis. Bacillus Calmette–Guérin vaccination protected cynomolgus almost completely toward the development of pathology, reflected in a striking 2-log reduction in viable bacteria in the lungs compared with nonvaccinated animals. Rhesus, on the other hand, were not protected efficiently by the bacillus Calmette–Guérin. The vaccinated animals developed substantial pathology and had negligible reductions of colony-forming units in the lungs. Comparative studies in these closely related species are likely to provide insight into mechanisms involved in protection against tuberculosis.

Collaboration


Dive into the Alan W. Thomas's collaboration.

Top Co-Authors

Avatar

Clemens H. M. Kocken

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Edmond J. Remarque

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Bart W. Faber

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

J. A. M. Langermans

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris J. Janse

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard A.W. Vervenne

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Annemarie van der Wel

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica M. Pasini

Biomedical Primate Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge