Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alanna Church is active.

Publication


Featured researches published by Alanna Church.


JAMA Oncology | 2016

Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors: The Individualized Cancer Therapy (iCat) Study

Marian H. Harris; Steven G. DuBois; Julia L. Glade Bender; AeRang Kim; Brian D. Crompton; Erin Parker; Ian P. Dumont; Andrew L. Hong; Dongjing Guo; Alanna Church; Kimberly Stegmaier; Charles W. M. Roberts; Suzanne Shusterman; Wendy B. London; Laura E. MacConaill; Neal I. Lindeman; Lisa Diller; Carlos Rodriguez-Galindo; Katherine A. Janeway

Importance Pediatric cancers represent a unique case with respect to cancer genomics and precision medicine, as the mutation frequency is low, and targeted therapies are less available. Consequently, it is unknown whether clinical sequencing can be of benefit. Objective To assess the feasibility of identifying actionable alterations and making individualized cancer therapy (iCat) recommendations in pediatric patients with extracranial solid tumors. Design, Setting, and Participants Clinical sequencing study at 4 academic medical centers enrolling patients between September 5, 2012, and November 19, 2013, with 1 year of clinical follow-up. Participants were 30 years or younger with high-risk, recurrent, or refractory extracranial solid tumors. The data analysis was performed October 28, 2014. Interventions Tumor profiling performed on archived clinically acquired specimens consisted of mutation detection by a Sequenom assay or targeted next-generation sequencing and copy number assessment by array comparative genomic hybridization. Results were reviewed by a multidisciplinary expert panel, and iCat recommendations were made if an actionable alteration was present, and an appropriate drug was available. Main Outcomes and Measures Feasibility was assessed using a 2-stage design based on the proportion of patients with recommendations. Results Of 100 participants (60 male; median [range] age, 13.4 [0.8-29.8] years), profiling was technically successful in 89 (89% [95% CI, 83%-95%]). Median (range) follow-up was 6.8 (2.0-23.6) months. Overall, 31 (31% [95% CI, 23%-41%]) patients received an iCat recommendation and 3 received matched therapy. The most common actionable alterations leading to an iCat recommendation were cancer-associated signaling pathway gene mutations (n = 10) and copy number alterations in MYC/MYCN (n = 6) and cell cycle genes (n = 11). Additional alterations with implications for clinical care but not resulting in iCat recommendations were identified, including mutations indicating the possible presence of a cancer predisposition syndrome and translocations suggesting a change in diagnosis. In total, 43 (43% [95% CI, 33%-53%]) participants had results with potential clinical significance. Conclusions and Relevance A multi-institution clinical genomics study in pediatric oncology is feasible and a substantial proportion of relapsed or refractory pediatric solid tumors have actionable alterations. Trial Registration clinicaltrials.gov Identifier: NCT01853345.


Neuro-oncology | 2017

Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors

Shakti Ramkissoon; Pratiti Bandopadhayay; Jaeho Hwang; Lori A. Ramkissoon; Noah F. Greenwald; Steven E. Schumacher; Ryan O’Rourke; Nathan Pinches; Patricia Ho; Hayley Malkin; Claire Sinai; Mariella G. Filbin; Ashley S. Plant; Wenya Linda Bi; Michael S. Chang; Edward Yang; Karen Wright; Peter Manley; Matthew Ducar; Sanda Alexandrescu; Hart G.W. Lidov; Ivana Delalle; Liliana Goumnerova; Alanna Church; Katherine A. Janeway; Marian H. Harris; Laura E. MacConaill; Rebecca D. Folkerth; Neal I. Lindeman; Charles D. Stiles

Background Clinical genomics platforms are needed to identify targetable alterations, but implementation of these technologies and best practices in routine clinical pediatric oncology practice are not yet well established. Methods Profile is an institution-wide prospective clinical research initiative that uses targeted sequencing to identify targetable alterations in tumors. OncoPanel, a multiplexed targeted exome-sequencing platform that includes 300 cancer-causing genes, was used to assess single nucleotide variants and rearrangements/indels. Alterations were annotated (Tiers 1-4) based on clinical significance, with Tier 1 alterations having well-established clinical utility. OncoCopy, a clinical genome-wide array comparative genomic hybridization (aCGH) assay, was also performed to evaluate copy number alterations and better define rearrangement breakpoints. Results Cancer genomes of 203 pediatric brain tumors were profiled across histological subtypes, including 117 samples analyzed by OncoPanel, 146 by OncoCopy, and 60 tumors subjected to both methodologies. OncoPanel revealed clinically relevant alterations in 56% of patients (44 cancer mutations and 20 rearrangements), including BRAF alterations that directed the use of targeted inhibitors. Rearrangements in MYB-QKI, MYBL1, BRAF, and FGFR1 were also detected. Furthermore, while copy number profiles differed across histologies, the combined use of OncoPanel and OncoCopy identified subgroup-specific alterations in 89% (17/19) of medulloblastomas. Conclusion The combination of OncoPanel and OncoCopy multiplex genomic assays can identify critical diagnostic, prognostic, and treatment-relevant alterations and represents an effective precision medicine approach for clinical evaluation of pediatric brain tumors.


Genetics in Medicine | 2017

Assigning clinical meaning to somatic and germ-line whole-exome sequencing data in a prospective cancer precision medicine study

Arezou A. Ghazani; Nelly Oliver; Joseph P. St. Pierre; Andrea Garofalo; Irene Rainville; Elaine Hiller; Daniel J. Treacy; Vanesa Rojas-Rudilla; Sam Wood; Elizabeth Bair; Michael Parello; Franklin W. Huang; Marios Giannakis; Frederick H. Wilson; Elizabeth H. Stover; Steven M. Corsello; Tom Nguyen; Huma Q. Rana; Alanna Church; Carol Lowenstein; Carrie Cibulskis; Ali Amin-Mansour; Jennifer C. Heng; Lauren K. Brais; Abigail Santos; Patrick Bauer; Amanda Waldron; Peter C. Lo; Megan J. Gorman; Christine A. Lydon

Purpose:Implementing cancer precision medicine in the clinic requires assessing the therapeutic relevance of genomic alterations. A main challenge is the systematic interpretation of whole-exome sequencing (WES) data for clinical care.Methods:One hundred sixty-five adults with metastatic colorectal and lung adenocarcinomas were prospectively enrolled in the CanSeq study. WES was performed on DNA extracted from formalin-fixed paraffin-embedded tumor biopsy samples and matched blood samples. Somatic and germ-line alterations were ranked according to therapeutic or clinical relevance. Results were interpreted using an integrated somatic and germ-line framework and returned in accordance with patient preferences.Results:At the time of this analysis, WES had been performed and results returned to the clinical team for 165 participants. Of 768 curated somatic alterations, only 31% were associated with clinical evidence and 69% with preclinical or inferential evidence. Of 806 curated germ-line variants, 5% were clinically relevant and 56% were classified as variants of unknown significance. The variant review and decision-making processes were effective when the process was changed from that of a Molecular Tumor Board to a protocol-based approach.Conclusion:The development of novel interpretive and decision-support tools that draw from scientific and clinical evidence will be crucial for the success of cancer precision medicine in WES studies.Genet Med advance online publication 26 January 2017


Nature Communications | 2016

Integrated genetic and pharmacologic interrogation of rare cancers

Andrew L. Hong; Yuen-Yi Tseng; Glenn S. Cowley; Oliver Jonas; Jaime H. Cheah; Bryan D. Kynnap; Mihir Doshi; Coyin Oh; Stephanie C. Meyer; Alanna Church; Shubhroz Gill; Craig M. Bielski; Paula Keskula; Alma Imamovic; Sara Howell; Gregory V. Kryukov; Paul A. Clemons; Aviad Tsherniak; Francisca Vazquez; Brian D. Crompton; Alykhan F. Shamji; Carlos Rodriguez-Galindo; Katherine A. Janeway; Charles W. M. Roberts; Kimberly Stegmaier; Paul Van Hummelen; Michael J. Cima; Robert Langer; Levi A. Garraway; Stuart L. Schreiber

Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers.


Cold Spring Harb Mol Case Stud | 2015

Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma

Sarah Tannenbaum-Dvir; Julia L. Glade Bender; Alanna Church; Katherine A. Janeway; Marian H. Harris; Mahesh Mansukhani; Peter L. Nagy; Stuart J. Andrews; Vundavalli V. Murty; Angela Kadenhe-Chiweshe; E.P. Connolly; Andrew L. Kung; Filemon Dela Cruz

Abstract We describe the clinical course of a recurrent case of congenital fibrosarcoma diagnosed in a 9-mo-old boy with a history of hemimelia. Following complete surgical resection of the primary tumor, the patient subsequently presented with bulky bilateral pulmonary metastases 6 mo following surgery. Molecular characterization of the tumor revealed the absence of the prototypical ETV6-NTRK3 translocation. However, tumor characterization incorporating cytogenetic, array comparative genomic hybridization, and RNA sequencing analyses, revealed a somatic t(2;15)(2p21;15q25) translocation resulting in the novel fusion of EML4 with NTRK3. Cloning and expression of EML4-NTRK3 in murine fibroblast NIH 3T3 cells revealed a potent tumorigenic phenotype as assessed in vitro and in vivo. These results demonstrate that multiple fusion partners targeting NTRK3 can contribute to the development of congenital fibrosarcoma.


Modern Pathology | 2018

Recurrent EML4–NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy

Alanna Church; Monica L. Calicchio; Valentina Nardi; Alena Skálová; Andre Pinto; Deborah A. Dillon; Carmen R Gomez-Fernandez; Namitha Manoj; Josh D Haimes; Joshua A Stahl; Filemon Dela Cruz; Sarah Tannenbaum-Dvir; Julia Glade-Bender; Andrew L. Kung; Steven G. DuBois; Harry P. Kozakewich; Katherine A. Janeway; Antonio R. Perez-Atayde; Marian H. Harris

Infantile fibrosarcoma and congenital mesoblastic nephroma are tumors of infancy traditionally associated with the ETV6–NTRK3 gene fusion. However, a number of case reports have identified variant fusions in these tumors. In order to assess the frequency of variant NTRK3 fusions, and in particular whether the recently identified EML4–NTRK3 fusion is recurrent, 63 archival cases of infantile fibrosarcoma, congenital mesoblastic nephroma, mammary analog secretory carcinoma and secretory breast carcinoma (tumor types that are known to carry recurrent ETV6–NTRK3 fusions) were tested with NTRK3 break-apart FISH, EML4–NTRK3 dual fusion FISH, and targeted RNA sequencing. The EML4–NTRK3 fusion was identified in two cases of infantile fibrosarcoma (one of which was previously described), and in one case of congenital mesoblastic nephroma, demonstrating that the EML4–NTRK3 fusion is a recurrent genetic event in these related tumors. The growing spectrum of gene fusions associated with infantile fibrosarcoma and congenital mesoblastic nephroma along with the recent availability of targeted therapies directed toward inhibition of NTRK signaling argue for alternate testing strategies beyond ETV6 break-apart FISH. The use of either NTRK3 FISH or next-generation sequencing will expand the number of cases in which an oncogenic fusion is identified and facilitate optimal diagnosis and treatment for patients.


Human Pathology | 2016

Chromosome 12p abnormalities and IMP3 expression in prepubertal pure testicular teratomas

Kristine M. Cornejo; Liang Cheng; Alanna Church; Mingsheng Wang; Zhong Jiang

Although the histologic appearance of pure testicular teratomas (PTTs) is similar in children and adults, the prognosis is dramatically different. Prepubertal PTTs are rare, with a benign clinical course, whereas the adult cases typically have malignant outcomes. Chromosome 12p abnormalities are seen in most adult testicular germ cell tumors but have not been found in prepubertal PTTs. IMP3 is an oncofetal protein that is highly expressed in many malignancies. Recently, we demonstrated IMP3 is expressed in adult mature testicular teratomas but not in mature ovarian teratomas. The aim of this study was to evaluate prepubertal PTTs for chromosome 12p abnormalities and expression of IMP3. A total of 11 cases (excision, n=1; orchiectomy, n=10) were obtained from the surgical pathology archives of 2 large medical centers (1957-2013). All 11 cases were investigated for isochromosome 12p and 12p copy number gain using interphase fluorescence in situ hybridization analysis and were examined by immunohistochemistry for IMP3 expression. Patients ranged in age from 0.9 to 7.0 (mean, 2.4) years. A positive immunohistochemical stain for IMP3 (cytoplasmic staining) was identified in 5 (46%) of 11 cases. Isochromosome 12p was detected in 2 cases (18%) that also expressed IMP3. Somatic copy number alterations of 12p were not observed (0%). We are the first to describe 12p abnormalities and IMP3 expression in prepubertal PTTs. Our data demonstrate a small subset of PTTs harbor typical molecular alterations observed in adult testicular germ cell tumors. Although prepubertal PTTs are considered to be benign neoplasms, it may be a heterogeneous group.


Cancer Research | 2018

Abstract B18: Modeling renal medullary carcinomas identifies druggable vulnerabilities in SMARCB1-deficient cancers

Andrew L. Hong; Yuen-Yi Tseng; Bryan D. Kynnap; Mihir Doshi; Jeremiah Wala; Gabriel J. Sandoval; Alanna Church; Elizabeth Mullen; Cigall Kadoch; Charles W. M. Roberts; Rameen Beroukhim; Jesse S. Boehm; William C. Hahn

Renal medullary carcinomas (RMCs) are thought to be driven by the loss of tumor suppressor, SMARCB1. These rare kidney cancers carry a very poor prognosis and primarily affect African American adolescents and young adults with sickle cell trait. From two patients with RMC, we have identified by whole-genome sequencing mechanisms of SMARCB1 loss (e.g., inactivating fusion events involving SMARCB1). We developed in vitro models of primary and relapsed metastatic disease. We performed biochemical and functional studies to conclusively show that RMC is dependent on loss of SMARCB1, similar to rhabdoid tumors and atypical teratoid/rhabdoid tumors. Furthermore, we performed small-molecule screens, pooled CRISPR-Cas9 knockout, and RNAi suppression screens focused on druggable cancer targets. Integration of these orthogonal methods identifies a core set of targets that may provide a rational approach to therapeutic targeting for this rare kidney cancer and other SMARCB1-deficient cancers. Citation Format: Andrew L. Hong, Yuen-Yi Tseng, Bryan D. Kynnap, Mihir B. Doshi, Jeremiah Wala, Gabriel Sandoval, Alanna J. Church, Elizabeth Mullen, Cigall Kadoch, Charles W.M. Roberts, Rameen Beroukhim, Jesse S. Boehm, William C. Hahn. Modeling renal medullary carcinomas identifies druggable vulnerabilities in SMARCB1-deficient cancers [abstract]. In: Proceedings of the AACR Special Conference: Pediatric Cancer Research: From Basic Science to the Clinic; 2017 Dec 3-6; Atlanta, Georgia. Philadelphia (PA): AACR; Cancer Res 2018;78(19 Suppl):Abstract nr B18.


Molecular Cancer Therapeutics | 2017

Abstract B17: Identification of Druggable Targets through Functional Multi-Omics in Renal Medullary Carcinoma

Andrew L. Hong; Yuen-Yi Tseng; Bryan D. Kynnap; Mihir Doshi; Gabriel J. Sandoval; Coyin Oh; Abeer Sayeed; Gill Shubhroz; Alanna Church; Paula Keskula; Anson Peng; Paul A. Clemons; Aviad Tsherniak; Francisca Vazquez; Carlos Rodriguez-Galindo; Katherine A. Janeway; Levi A. Garraway; Stuart L. Schreiber; David E. Root; Elizabeth Mullen; Kimberly Stegmaier; Cigall Kadoch; Charles W. M. Roberts; Jesse S. Boehm; William C. Hahn

Renal medullary carcinoma is a rare kidney cancer that is primarily seen in adolescent and young adult African American patients with sickle cell trait. Prognosis is poor and treatment options are limited. We have developed several cell line models that recapitulate the primary and relapsed metastatic samples from a patient who succumbed to this disease. We have confirmed by whole exome sequencing that our models have sickle cell trait and loss of heterozygosity of the SMARCB1 loci, both hallmarks of this disease. By RNA-sequencing, we see a lack of SMARCB1 transcription. We have further shown dependency of our models to SMARCB1 re-expression thus suggesting that this cancer is indeed driven by loss of SMARCB1 at a functional level. We performed pooled CRISPR-Cas9 and RNAi loss of function screens and a small molecule screen focused on druggable cancer targets based on our previous work in parallel to a genome-wide pooled CRISPR-Cas9 loss of function screen. Integrating these complementary and orthogonal methods, we identified a number of targets for further validation. These targets, when combined may provide a rational approach to therapeutic targeting for this rare kidney cancer. Citation Format: Andrew L. Hong, Yuen-Yi Tseng, Bryan D. Kynnap, Mihir B. Doshi, Gabriel Sandoval, Coyin Oh, Abeer Sayeed, Gill Shubhroz, Alanna J. Church, Paula Keskula, Anson Peng, Paul A. Clemons, Aviad Tsherniak, Francisca Vazquez, Carlos Rodriguez-Galindo, Katherine A. Janeway, Levi A. Garraway, Stuart L. Schreiber, David E. Root, Elizabeth Mullen, Kimberly Stegmaier, Cigall Kadoch, Charles W.M. Roberts, Jesse S. Boehm, William C. Hahn. Identification of Druggable Targets through Functional Multi-Omics in Renal Medullary Carcinoma [abstract]. In: Proceedings of the AACR Precision Medicine Series: Opportunities and Challenges of Exploiting Synthetic Lethality in Cancer; Jan 4-7, 2017; San Diego, CA. Philadelphia (PA): AACR; Mol Cancer Ther 2017;16(10 Suppl):Abstract nr B17.


Cancer Research | 2016

Abstract B38: Developing a functional genomics platform to interrogate rare pediatric cancers

Andrew L. Hong; Glenn S. Cowley; Yuen-Yi Tseng; Jaime H. Cheah; Oliver Jonas; Mihir Doshi; Bryan D. Kynnap; Coyin Oh; Stephanie D. Meyer; Paul A. Clemons; Michael Burger; Francisca Vazquez; Barbara A. Weir; Gregory V. Kryukov; Alanna Church; Alma Imamovic; Aviad Tsherniak; Craig M. Bielski; Brian D. Crompton; Elizabeth Mullen; Charles W. M. Roberts; Carlos Rodriguez-Galindo; Katherine A. Janeway; Kimberly Stegmaier; Paul Van Hummelen; Robert Langer; Levi A. Garraway; Stuart L. Schreiber; David E. Root; Jesse S. Boehm

Of pediatric solid tumors, as many as 10% of tumors are categorized as rare. Many of these rare tumors lack standard effective known therapy. The ability to identify vulnerabilities for many rare tumors has been significantly limited by the lack of in vitro and in vivo models. Furthermore, current approaches to study such vulnerabilities are usually limited to a specific compound or target. Our objectives were 1) to develop a platform to collect tumor samples and generate in vitro models and 2) to develop systematic and orthogonal approaches focused on currently known druggable cancer targets to identify vulnerabilities in these difficult to treat cancers. We have developed a proof of concept cell line from a patient who succumbed to progressive undifferentiated sarcoma treated on an aggressive multi-therapy regimen. This cell line, in its early passages, has novel gene fusions that match that of the primary tumor. Furthermore, even at early passages, this cell line was amenable to high throughput functional screens. Using a targeted pooled shRNA screen (employing matched seed controls) and an analogous CRISPR screen we identified dependencies to XPO1 and CDK4. In parallel, compounds against these targets were identified in a small molecule compound screen. These targetable dependencies were further validated in vivo with a micro-dosing device. These observations identify new targets in this rare malignancy. Furthermore, this suggests that the interrogation of patient derived cell lines facilitates the identification of testable therapeutic approaches. Citation Format: Andrew L. Hong, Glenn S. Cowley, Yuen-Yi Tseng, Jaime H. Cheah, Oliver Jonas, Mihir B. Doshi, Bryan D. Kynnap, Coyin Oh, Stephanie Meyer, Paul Clemons, Michael Burger, Francisca Vazquez, Barbara Weir, Gregory V. Kryukov, Alanna Church, Alma Imamovic, Aviad Tsherniak, Craig Bielski, Brian Crompton, Elizabeth Mullen, Charles Roberts, Carlos Rodriguez-Galindo, Katherine A. Janeway, Kimberly Stegmaier, Paul van Hummelen, Robert Langer, Levi A. Garraway, Stuart L. Schreiber, David E. Root, Jesse S. Boehm, William C. Hahn. Developing a functional genomics platform to interrogate rare pediatric cancers. [abstract]. In: Proceedings of the AACR Special Conference on Advances in Pediatric Cancer Research: From Mechanisms and Models to Treatment and Survivorship; 2015 Nov 9-12; Fort Lauderdale, FL. Philadelphia (PA): AACR; Cancer Res 2016;76(5 Suppl):Abstract nr B38.

Collaboration


Dive into the Alanna Church's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marian H. Harris

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Rodriguez-Galindo

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles W. M. Roberts

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Neal I. Lindeman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge