Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Collareta is active.

Publication


Featured researches published by Alberto Collareta.


Journal of Maps | 2016

Distribution of fossil marine vertebrates in Cerro Colorado, the type locality of the giant raptorial sperm whale Livyatan melvillei (Miocene, Pisco Formation, Peru)

Giovanni Bianucci; Claudio Di Celma; Walter Landini; Klaas Post; Chiara Tinelli; Christian de Muizon; Karen Gariboldi; Elisa Malinverno; Gino Cantalamessa; Anna Gioncada; Alberto Collareta; Rodolfo-Salas Gismondi; Rafael Varas-Malca; Mario Urbina; Olivier Lambert

Hundreds of fossil marine vertebrates cropping out at Cerro Colorado (Pisco Basin, Peru) are identified and reported on a 1:6500 scale geological map and in a joined stratigraphic section. All the fossils are from the lower strata of the Pisco Formation, dated in this area to the late middle or early late Miocene. They are particularly concentrated (88%) in the stratigraphic interval from 40 to 75 m above the unconformity with the underlying Chilcatay Formation. The impressive fossil assemblage includes more than 300 specimens preserved as bone elements belonging mostly to cetaceans (81%), represented by mysticetes (cetotheriids and balaenopteroids) and odontocetes (kentriodontid-like delphinidans, pontoporiids, ziphiids, and physeteroids, including the giant raptorial sperm whale Livyatan melvillei). Seals, crocodiles, sea turtles, seabirds, bony fish, and sharks are also reported. Isolated large teeth of Carcharocles and Cosmopolitodus are common throughout the investigated stratigraphical interval, whereas other shark teeth, mostly of carcharinids, are concentrated in one sandy interval. This work represents a first detailed census of the extraordinary paleontological heritage of the Pisco Basin and the basis for future taphonomic, paleoecological, and systematic studies, as well as a much needed conservation effort for this extremely rich paleontological site.


Proceedings of the Royal Society B: Biological Sciences | 2015

No deep diving: evidence of predation on epipelagic fish for a stem beaked whale from the Late Miocene of Peru.

Olivier Lambert; Alberto Collareta; Walter Landini; Klaas Post; Benjamin Ramassamy; Claudio Di Celma; Mario Urbina; Giovanni Bianucci

Although modern beaked whales (Ziphiidae) are known to be highly specialized toothed whales that predominantly feed at great depths upon benthic and benthopelagic prey, only limited palaeontological data document this major ecological shift. We report on a ziphiid–fish assemblage from the Late Miocene of Peru that we interpret as the first direct evidence of a predator–prey relationship between a ziphiid and epipelagic fish. Preserved in a dolomite concretion, a skeleton of the stem ziphiid Messapicetus gregarius was discovered together with numerous skeletons of a clupeiform fish closely related to the epipelagic extant Pacific sardine (Sardinops sagax). Based on the position of fish individuals along the head and chest regions of the ziphiid, the lack of digestion marks on fish remains and the homogeneous size of individuals, we propose that this assemblage results from the death of the whale (possibly via toxin poisoning) shortly after the capture of prey from a single school. Together with morphological data and the frequent discovery of fossil crown ziphiids in deep-sea deposits, this exceptional record supports the hypothesis that only more derived ziphiids were regular deep divers and that the extinction of epipelagic forms may coincide with the radiation of true dolphins.


Naturwissenschaften | 2015

Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale

Alberto Collareta; Walter Landini; Olivier Lambert; Klaas Post; Chiara Tinelli; Claudio Di Celma; Daniele Panetta; Maria Tripodi; Piero A. Salvadori; Davide Caramella; Damiano Marchi; Mario Urbina; Giovanni Bianucci

Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.


Journal of Maps | 2016

Fossil marine vertebrates of Cerro Los Quesos: Distribution of cetaceans, seals, crocodiles, seabirds, sharks, and bony fish in a late Miocene locality of the Pisco Basin, Peru

Giovanni Bianucci; Claudio Di Celma; Alberto Collareta; Walter Landini; Klaas Post; Chiara Tinelli; Christian de Muizon; Giulia Bosio; Karen Gariboldi; Anna Gioncada; Elisa Malinverno; Gino Cantalamessa; Ali J. Altamirano-Sierra; Rodolfo Salas-Gismondi; Mario Urbina; Olivier Lambert

ABSTRACT One-hundred and ninety-two fossil marine vertebrate specimens, preserved as bone elements cropping out at Cerro Los Quesos (Pisco Basin, Peru), are identified and reported on a 1:4,000 scale geological map and in the corresponding stratigraphic section. All the fossils originate from the Pisco Formation, which is dated in this area to the late Miocene (from 7.55 Ma to ≥6.71 Ma, based on 40Ar/39Ar analyses of three volcanic ash layers along the section). Specimens are particularly concentrated near the top of the two main hills, where the geologically youngest portion of the examined section crops out. The impressive fossil assemblage includes cetaceans (91.6%), represented by mysticetes (balaenopteroids and cetotheriids) and odontocetes (phocoenids, physeteroids, and ziphiids, including the holotype of Nazcacetus urbinai). Seals, a crocodile, a seabird, bony fish, and sharks are also reported. Isolated large teeth of Carcharocles and Cosmopolitodus are common and, in several instances, associated to mysticete skeletons. Together with a similar work recently published for the other late Miocene locality of Cerro Colorado, this work represents a case study for the detailed inventory of the extraordinary paleontological heritage of the Pisco Basin. As such, it constitutes the basis for future taphonomic, paleoecological, and systematic studies, as well as for a much-needed conservation effort.


Journal of Maps | 2016

Stratigraphic framework of the late Miocene Pisco Formation at Cerro Los Quesos (Ica Desert, Peru)

C. Di Celma; Elisa Malinverno; Gino Cantalamessa; Anna Gioncada; Giulia Bosio; Igor M. Villa; Karen Gariboldi; Andrea Rustichelli; Pietro Paolo Pierantoni; Walter Landini; Chiara Tinelli; Alberto Collareta; Giovanni Bianucci

The enormous concentration of marine vertebrates documented within the Pisco Formation is unique for Peru and South America and places this unit among the prime fossil Lagerstätten for Miocene to Pliocene marine mammals worldwide. In order to provide a robust stratigraphic framework for the fossil-bearing locality of Cerro Los Quesos, this study presents a 1:10,000 scale geological map covering an area of about 21 km2, a detailed measured section spanning 290 m of strata, and a refined chronostratigraphy for the studied succession well constrained by diatom biostratigraphy and high-resolution 40Ar/39Ar isotopic dating of three interbedded ash layers. Within the apparently monotonous, diatomite-dominated sedimentary section, the Pisco Formation has been subdivided into six local members, with stratigraphic control over the different outcrops facilitated by the establishment of a detailed marker bed stratigraphy based on 15 readily distinguishable sediment layers of different nature.


Geology | 2016

Inside baleen: Exceptional microstructure preservation in a late Miocene whale skeleton from Peru

Anna Gioncada; Alberto Collareta; Karen Gariboldi; Olivier Lambert; Claudio Di Celma; Elena Bonaccorsi; Mario Urbina; Giovanni Bianucci

Exceptionally preserved delicate baleen microstructures have been found in association with the skeleton of a late Miocene balaenopteroid whale in a dolomite concretion of the Pisco Formation, Peru. Microanalytical data (scanning electron microscopy, electron probe microanalysis, X-ray diffraction) on fossil baleen are provided and the results are discussed in terms of their taphonomic and paleoecological implications. Baleen fossilization modes at this site include molding of plates and tubules, and phosphatization. A rapid formation of the concretion was fundamental for fossilization. We suggest that the whale foundered in a soft sediment chemically favorable to rapid dolomite precipitation, allowing the preservation of delicate structures. Morphometric considerations on the baleen plates and bristles coupled with the reconstructed calcification of the latter permit speculation on the trophic preferences of this balaenopteroid whale: the densely spaced plates and the fine and calcified bristles provide evidence for feeding on small-sized plankton, as does the modern sei whale.


Rivista Italiana Di Paleontologia E Stratigrafia | 2017

SEQUENCE STRATIGRAPHY AND PALEONTOLOGY OF THE UPPER MIOCENE PISCO FORMATION ALONG THE WESTERN SIDE OF THE LOWER ICA VALLEY (ICA DESERT, PERU)

Claudio Di Celma; Elisa Malinverno; Giulia Bosio; Alberto Collareta; Karen Gariboldi; Anna Gioncada; Giancarlo Molli; Daniela Basso; Rafael Varas-Malca; Pietro Paolo Pierantoni; Igor M. Villa; Olivier Lambert; Walter Landini; Giovanni Sarti; Gino Cantalamessa; Mario Urbina; Giovanni Bianucci

The sequence stratigraphic framework and a summary of the fossil fauna of the upper Miocene portion of the Pisco Formation exposed along the western side of the Ica River (southern Peru) is presented through a new geological map encompassing an area of about 200 km 2 and detailed chronostratigraphic analyses. Extensive field mapping and sedimentological study of outcrop sections have shown that the Pisco Formation is a cyclical sediment unit composed of at least three fining-upward, unconformity-bounded depositional sequences, designated P0, P1, and P2 from oldest to youngest. In the study area, these sequences progressively onlap a composite basal unconformity from southwest to northeast. Integration of biostratigraphic and tephrochronologic age determinations constrains the ages of the three Pisco sequences within the study area. Based on the age of surrounding sediments, a conservative estimate of the age of P0 suggests deposition of these strata between 17.99 ± 0.10 Ma and 9.00 ± 0.02 Ma, whereas diatom biostratigraphy and calculated 40 Ar/ 39 Ar ages converge to indicate that strata of the P1 sequence were deposited sometime between 9.5 Ma and 8.9 Ma and that those of the P2 sequence are younger than 8.5 Ma and older than 6.71 ± 0.02 Ma. Our survey for both vertebrate and macro-invertebrate remains in the three sequences confirms the outstanding paleontological value of the Pisco Formation and contributes to depict regional faunal shifts in the fossil assemblage.


Journal of Anatomy | 2017

How whales used to filter: exceptionally preserved baleen in a Miocene cetotheriid

Felix G. Marx; Alberto Collareta; Anna Gioncada; Klaas Post; Olivier Lambert; Elena Bonaccorsi; Mario Urbina; Giovanni Bianucci

Baleen is a comb‐like structure that enables mysticete whales to bulk feed on vast quantities of small prey, and ultimately allowed them to become the largest animals on Earth. Because baleen rarely fossilises, extremely little is known about its evolution, structure and function outside the living families. Here we describe, for the first time, the exceptionally preserved baleen apparatus of an entirely extinct mysticete morphotype: the Late Miocene cetotheriid, Piscobalaena nana, from the Pisco Formation of Peru. The baleen plates of P. nana are closely spaced and built around relatively dense, fine tubules, as in the enigmatic pygmy right whale, Caperea marginata. Phosphatisation of the intertubular horn, but not the tubules themselves, suggests in vivo intertubular calcification. The size of the rack matches the distribution of nutrient foramina on the palate, and implies the presence of an unusually large subrostral gap. Overall, the baleen morphology of Piscobalaena likely reflects the interacting effects of size, function and phylogeny, and reveals a previously unknown degree of complexity in modern mysticete feeding evolution.


Rivista Italiana Di Paleontologia E Stratigrafia | 2017

A WELL PRESERVED SKELETON OF THE FOSSIL SHARK COSMOPOLITODUS HASTALIS FROM THE LATE MIOCENE OF PERU, FEATURING FISH REMAINS AS FOSSILIZED STOMACH CONTENTS

Alberto Collareta; Walter Landini; César Chacaltana; Waldir Valdivia; Ali J. Altamirano-Sierra; Mario Urbina-schmitt; Giovanni Bianucci

Both the preservation of the poorly mineralized skeleton of sharks and the preservation of stomach contents are rarely observed in the fossil record. Here we report on a partial skeleton of a lamniform shark, including portions of the visceral arches and the anterior segment of the vertebral column, collected from the late Miocene beds of the Pisco Formation exposed at Cerro Yesera (Ica Desert, South Peru). Based on the morphology of the preserved teeth, this specimen was determined as a juvenile of the extinct lamnid species Cosmopolitodus hastalis . The shark skeleton includes remains of fish (featuring a pilchard determined as Sardinops sp. cf. S. sagax ) in the abdominal region. These fish remains are interpreted herein as the fossilized stomach contents of the shark. For the first time, piscivory is demonstrated in a juvenile individual of Cosmopolitodus hastalis . This result is consistent with the current knowledge about the feeding habits of immature individuals of extant lamniform shark species (including Carcharodon carcharias and Isurus oxyrinchus ). Our report further outlines the fundamental role of schooling pilchards in the late Miocene trophic chains of the highly productive coastal waters off present South Peru. Moreover, the find of this well preserved shark skeleton strengthens the qualification of the Pisco Formation as a Fossil-Lagerstatte, and emphasizes the role of early mineralization processes in cases of exceptional preservation.


Journal of Maps | 2018

Facies analysis, stratigraphy and marine vertebrate assemblage of the lower Miocene Chilcatay Formation at Ullujaya (Pisco basin, Peru)

C. Di Celma; Elisa Malinverno; Alberto Collareta; Giulia Bosio; Karen Gariboldi; Olivier Lambert; Walter Landini; Pietro Paolo Pierantoni; Anna Gioncada; Igor M. Villa; G. Coletti; C. de Muizon; Mario Urbina; Giovanni Bianucci

ABSTRACT This paper is the first integrated account of the sedimentology, stratigraphy, and vertebrate paleontology for the marine strata of the Chilcatay Formation exposed at Ullujaya, Pisco basin (southern Peru). An allostratigraphic framework for the investigated strata was established using geological mapping (1:4000 scale) and conventional sedimentary facies analysis and resulted in recognition of two unconformity-bounded allomembers (designated Ct1 and Ct2 in ascending order). The chronostratigraphic framework is well constrained by integration of micropaleontological data and isotope geochronology and indicates deposition during the early Miocene. The marine vertebrate fossil assemblage is largely dominated by cetaceans (odontocetes), whereas isolated teeth and spines indicate a well-diversified elasmobranch assemblage. Our field surveys, conducted to evaluate the paleontological sensitivity of the investigated strata, indicate that vertebrate remains only came from a rather restricted stratigraphic interval of the Ct1 allomember and reveal the high potential for these sediments to yield abundant and scientifically significant fossil assemblages.

Collaboration


Dive into the Alberto Collareta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Urbina

National University of San Marcos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Lambert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge