Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Lobo is active.

Publication


Featured researches published by Alberto Lobo.


Classical and Quantum Gravity | 2012

Low-frequency gravitational-wave science with eLISA/NGO

Pau Amaro-Seoane; S. Aoudia; S. Babak; P. Binetruy; Emanuele Berti; A. Bohe; Chiara Caprini; Monica Colpi; Neil J. Cornish; Karsten Danzmann; Jean-Francois Dufaux; Jonathan R. Gair; Oliver Jennrich; Philippe Jetzer; Antoine Klein; Ryan N. Lang; Alberto Lobo; T. B. Littenberg; Sean T. McWilliams; Gijs Nelemans; Antoine Petiteau; Edward K. Porter; Bernard F. Schutz; Alberto Sesana; Robin T. Stebbins; T. J. Sumner; M. Vallisneri; S. Vitale; Marta Volonteri; H. Ward

We review the expected science performance of the New Gravitational-Wave Observatory (NGO, a.k.a. eLISA), a mission under study by the European Space Agency for launch in the early 2020s. eLISA will survey the low-frequency gravitational-wave sky (from 0.1 mHz to 1 Hz), detecting and characterizing a broad variety of systems and events throughout the Universe, including the coalescences of massive black holes brought together by galaxy mergers; the inspirals of stellar-mass black holes and compact stars into central galactic black holes; several millions of ultra-compact binaries, both detached and mass transferring, in the Galaxy; and possibly unforeseen sources such as the relic gravitational-wave radiation from the early Universe. eLISAs high signal-to-noise measurements will provide new insight into the structure and history of the Universe, and they will test general relativity in its strong-field dynamical regime.


Classical and Quantum Gravity | 1996

LISA: laser interferometer space antenna for gravitational wave measurements

J. Hough; P. L. Bender; A. Brillet; Ignazio Ciufolini; Karsten Danzmann; Ronald W. Hellings; Alberto Lobo; M. Sandford; Bernard F. Schutz; Pierre Touboul

LISA (laser interferometer space antenna) is designed to observe gravitational waves from violent events in the Universe in a frequency range from to which is totally inaccessible to ground-based experiments. It uses highly stabilized laser light (Nd:YAG, ) in a Michelson-type interferometer arrangement. A cluster of six spacecraft with two at each vertex of an equilateral triangle is placed in an Earth-like orbit at a distance of 1 AU from the Sun, and behind the Earth. Three subsets of four adjacent spacecraft each form an interferometer comprising a central station, consisting of two relatively adjacent spacecraft (200 km apart), and two spacecraft placed at a distance of from the centre to form arms which make an angle of with each other. Each spacecraft is equipped with a laser. A descoped LISA with only four spacecraft has undergone an ESA assessment study in the M3 cycle and the full six-spacecraft LISA mission has now been selected as a cornerstone mission in the ESA Horizon 2000-plus programme.


Classical and Quantum Gravity | 2005

The LTP experiment on the LISA Pathfinder mission

S. Anza; M Armano; E. Balaguer; M. Benedetti; C. Boatella; P. Bosetti; D. Bortoluzzi; N. Brandt; Claus Braxmaier; Martin E. Caldwell; L. Carbone; A. Cavalleri; A. Ciccolella; I. Cristofolini; M. Cruise; M. Da Lio; Karsten Danzmann; D. Desiderio; R. Dolesi; N. Dunbar; Walter Fichter; C. Garcia; E. Garcia-Berro; A. F. Garcia Marin; R. Gerndt; Alberto Gianolio; Domenico Giardini; R. Gruenagel; A. Hammesfahr; Gerhard Heinzel

We report on the development of the LISA Technology Package (LTP) experiment that will fly onboard the LISA Pathfinder mission of the European Space Agency in 2008. We first summarize the science rationale of the experiment aimed at showing the operational feasibility of the so-called transverse–traceless coordinate frame within the accuracy needed for LISA. We then show briefly the basic features of the instrument and we finally discuss its projected sensitivity and the extrapolation of its results to LISA.


Classical and Quantum Gravity | 2009

LISA Pathfinder: the experiment and the route to LISA

M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; P. Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; A. M. Cruise; Karsten Danzmann; I. Diepholz; G. Dixon; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; M. Freschi; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; M. Hewitson; D. Hollington; J. Hough; M. Hueller; D. Hoyland

LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.


Classical and Quantum Gravity | 2011

LISA Pathfinder: mission and status

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; C. Boatella; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; M. Caleno; A. Cavalleri; M. Cesa; M. Chmeissani; G. Ciani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter

LISA Pathfinder, the second of the European Space Agencys Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun?Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500?000 km by 800?000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.


Classical and Quantum Gravity | 2012

The LISA Pathfinder Mission

F. Antonucci; M. Armano; H. Audley; G. Auger; M. Benedetti; P. Binetruy; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; M. Caleno; Priscilla Canizares; A. Cavalleri; M. Cesa; M. Chmeissani; A. Conchillo; Giuseppe Congedo; I. Cristofolini; M. Cruise; Karsten Danzmann; F. De Marchi; M. Diaz-Aguilo; I. Diepholz; G. Dixon; R. Dolesi; N. Dunbar; J. Fauste; L. Ferraioli; V. Ferrone; Walter Fichter

In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.


Classical and Quantum Gravity | 2009

Data analysis for the LISA Technology Package

M. Hewitson; M. Armano; M. Benedetti; J. Bogenstahl; D. Bortoluzzi; Paolo Bosetti; N. Brandt; A. Cavalleri; G. Ciani; I. Cristofolini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; J. Fauste; L. Ferraioli; D. Fertin; Walter Fichter; Antonio Garcia; C. Garcia; A. Grynagier; F. Guzman; E. Fitzsimons; Gerhard Heinzel; D. Hollington; J. Hough; M. Hueller; D. Hoyland; O. Jennrich; B. Johlander

The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.


Classical and Quantum Gravity | 2006

On-ground tests of the LISAPathFinder thermal diagnostics system

Alberto Lobo; M. Nofrarias; J. Ramos-Castro; J. Sanjuan

Thermal conditions in the LTP, the LISA Technology Package, are required to be very stable, and in such environments precision temperature measurements are also required for various diagnostics objectives. A sensitive temperature gauging system for the LTP is being developed at IEEC, which includes a set of thermistors and associated electronics. In this paper, we discuss the derived requirements applying to the temperature sensing system, and address the problem of how to create in the laboratory a thermally quiet environment, suitable for performing meaningful on-ground tests of the system. The concept is a two-layer spherical body, with a central aluminium core for sensor implantation surrounded by a layer of polyurethane. We construct the insulator transfer function, which relates the temperature at the core to the laboratory ambient temperature, and evaluate the losses caused by heat leakage through connecting wires. The results of the analysis indicate that, in spite of the very demanding stability conditions, a sphere of outer diameter of the order 1 m is sufficient. We provide experimental evidence confirming the model predictions.


Classical and Quantum Gravity | 2009

The diagnostics subsystem on board LISA Pathfinder and LISA

P Canizares; Aleix Conchillo; Enrique García-Berro; L Gesa; C. Grimani; I. Lloro; Alberto Lobo; I. Mateos; M. Nofrarias; J. Ramos-Castro; J Sanjuán; Carlos F. Sopuerta

The data and diagnostics subsystem of the LTP hardware and software are at present essentially ready for delivery. In this presentation we intend to describe the scientific and technical aspects of this subsystem, which includes thermal diagnostics, magnetic diagnostics and a radiation monitor, as well as the prospects for their integration within the rest of the LTP. We will also sketch a few lines of progress recently open towards the more demanding diagnostics requirements which will be needed for LISA.


Review of Scientific Instruments | 2007

Thermal diagnostics front-end electronics for LISA Pathfinder

J. Sanjuán; Alberto Lobo; M. Nofrarias; J. Ramos-Castro; P. J. Riu

Precision temperature measurements are required in the LTP, the LISA technology package, for various diagnostics objectives. In this article, we describe in detail the front-end electronics design and the associated temperature sensors to achieve the LTP requirements: noise equivalent temperature of 10 microK Hz(-12) in the frequency range from 1 to 30 mHz at room temperature. We designed an ac Wheatstone bridge and a subsequent digital demodulation to minimize 1/f noise. We show experimental results where the required sensitivity in the measurement bandwidth is fulfilled.

Collaboration


Dive into the Alberto Lobo's collaboration.

Top Co-Authors

Avatar

M. Nofrarias

Institut de Ciències de l'Espai

View shared research outputs
Top Co-Authors

Avatar

J. Ramos-Castro

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

I. Mateos

Institut de Ciències de l'Espai

View shared research outputs
Top Co-Authors

Avatar

M. Diaz-Aguilo

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Grimani

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique García-Berro

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

I. Lloro

Institut de Ciències de l'Espai

View shared research outputs
Researchain Logo
Decentralizing Knowledge