Aldo M. Roccaro
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aldo M. Roccaro.
Blood | 2009
Abdel Kareem Azab; Judith Runnels; Costas Pitsillides; Anne-Sophie Moreau; Feda Azab; Xavier Leleu; Xiaoying Jia; Renee Wright; Beatriz Ospina; Alicia L. Carlson; Clemens Alt; Nicholas Burwick; Aldo M. Roccaro; Hai T. Ngo; Mena Farag; Molly R. Melhem; Antonio Sacco; Nikhil C. Munshi; Teru Hideshima; Barrett J. Rollins; Kenneth C. Anderson; Andrew L. Kung; Charles P. Lin; Irene M. Ghobrial
The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.
Cancer Research | 2006
Aldo M. Roccaro; Teru Hideshima; Noopur Raje; Shaji Kumar; Kenji Ishitsuka; Hiroshi Yasui; Norihiko Shiraishi; Domenico Ribatti; Beatrice Nico; Angelo Vacca; Franco Dammacco; Paul G. Richardson; Kenneth C. Anderson
Bone marrow angiogenesis plays an important role in the pathogenesis and progression in multiple myeloma. Recent studies have shown that proteasome inhibitor bortezomib (Velcade, formerly PS-341) can overcome conventional drug resistance in vitro and in vivo; however, its antiangiogenic activity in the bone marrow milieu has not yet been defined. In the present study, we examined the effects of bortezomib on the angiogenic phenotype of multiple myeloma patient-derived endothelial cells (MMEC). At clinically achievable concentrations, bortezomib inhibited the proliferation of MMECs and human umbilical vein endothelial cells in a dose-dependent and time-dependent manner. In functional assays of angiogenesis, including chemotaxis, adhesion to fibronectin, capillary formation on Matrigel, and chick embryo chorioallantoic membrane assay, bortezomib induced a dose-dependent inhibition of angiogenesis. Importantly, binding of MM.1S cells to MMECs triggered multiple myeloma cell proliferation, which was also abrogated by bortezomib in a dose-dependent fashion. Bortezomib triggered a dose-dependent inhibition of vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) secretion by the MMECs, and reverse transcriptase-PCR confirmed drug-related down-regulation of VEGF, IL-6, insulin-like growth factor-I, Angiopoietin 1 (Ang1), and Ang2 transcription. These data, therefore, delineate the mechanisms of the antiangiogenic effects of bortezomib on multiple myeloma cells in the bone marrow milieu.
Blood | 2009
Aldo M. Roccaro; Antonio Sacco; Brian Thompson; Xavier Leleu; Abdel Kareem Azab; Feda Azab; Judith Runnels; Xiaoying Jia; Hai T. Ngo; Molly R. Melhem; Charles P. Lin; Domenico Ribatti; Barrett J. Rollins; Thomas E. Witzig; Kenneth C. Anderson; Irene M. Ghobrial
Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138(+) MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-kappaB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM.
Leukemia | 2007
Domenico Ribatti; Beatrice Nico; Enrico Crivellato; Aldo M. Roccaro; A Vacca
Spontaneously arising tumor cells are not usually angiogenic at first. The phenotypic switch to angiogenesis is usually accomplished by a substet that induces new capillaries that then converge toward the tumor. The switch clearly involves more than simple upregulation of angiogenic activity and is thought to be the result of a net balance of positive and negative regulators. Tumor growth is although to require disruption of this balance and hence this switch must turned on for cancer progression. Progenitor endothelial cells, the crosstalk between angiogenic factors and their receptors and the interaction between vasculogenesis and lymphangiogenesis are all factors that may contribute to the switch. Its promotion is also the outcome of genetic instability resulting in the emergence of tumor cell lines. This review describes the history of the angiogenic switch illustrated in the literature and with particular reference to the three transgenic mouse models, namely RIP1-TAG2, keratin-14 (K14) (human papilloma virus) HPV16 and papilloma virus, used for stage-specific assessment of the effects of antiangiogenic and antitumorigenic agents.
Blood | 2012
Abdel Kareem Azab; Jinsong Hu; Phong Quang; Feda Azab; Costas Pitsillides; Rana Awwad; Brian Thompson; Patricia Maiso; Jessica Sun; Charles P. Hart; Aldo M. Roccaro; Antonio Sacco; Hai T. Ngo; Charles P. Lin; Andrew L. Kung; Ruben D. Carrasco; Karin Vanderkerken; Irene M. Ghobrial
The spread of multiple myeloma (MM) involves (re)circulation into the peripheral blood and (re)entrance or homing of MM cells into new sites of the BM. Hypoxia in solid tumors was shown to promote metastasis through activation of proteins involved in the epithelial-mesenchymal transition (EMT) process. We hypothesized that MM-associated hypoxic conditions activate EMT-related proteins and promote metastasis of MM cells. In the present study, we have shown that hypoxia activates EMT-related machinery in MM cells, decreases the expression of E-cadherin, and, consequently, decreases the adhesion of MM cells to the BM and enhances egress of MM cells to the circulation. In parallel, hypoxia increased the expression of CXCR4, consequently increasing the migration and homing of circulating MM cells to new BM niches. Further studies to manipulate hypoxia to regulate tumor dissemination as a therapeutic strategy are warranted.
European Journal of Clinical Investigation | 2003
Domenico Ribatti; Angelo Vacca; Aldo M. Roccaro; Enrico Crivellato; Marco Presta
Erythropoietin (Epo) is produced by the fetal liver and adult kidney and is an essential stimulator of erythropoiesis. It has, however, been shown to modulate host cellular signal transduction pathway to perform many other functions. New sites of Epo production have been found, such as the female reproductive organs and central nervous system. This review summarizes the involvement of Epo in the regulation of angiogenesis in both normal and pathological conditions.
Journal of Clinical Oncology | 2009
Xavier Leleu; Jacob D. Soumerai; Aldo M. Roccaro; Evdoxia Hatjiharissi; Zachary R. Hunter; Robert Manning; Bryan Ciccarelli; Antonio Sacco; Leukothea Ioakimidis; Sophia Adamia; Anne-Sophie Moreau; Christopher J. Patterson; Irene M. Ghobrial; Steven P. Treon
PURPOSE Nucleoside analogs (NAs) are considered as appropriate agents in the treatment of Waldenström macroglobulinemia (WM), a lymphoplasmacytic lymphoma. Sporadic reports on increased incidence of transformation to high-grade non-Hodgkins lymphoma and development of therapy-related myelodysplasia/acute leukemia (t-MDS/AML) among patients with WM treated with NAs prompted us to examine the incidence of such events in a large population of patients with WM. PATIENTS AND METHODS We examined the incidence of these events in 439 patients with WM, 193 and 136 of whom were previously treated with and without an NA, respectively, and 110 of whom had similar long-term follow-up without treatment. The median follow-up for all patients was 5 years. RESULTS Overall, 12 patients (6.2%) either developed transformation (n = 9; 4.7%) or developed t-MDS/AML (n = 3; 1.6%) among NA-treated patients, compared with one patient (0.4%) who developed transformation in the non-NA treated group (P < .001); no such events occurred among untreated patients. Transformation and t-MDS/AML occurred at a median of 5 years from onset of NA therapy. The median survival of NA-treated patients who developed transformation did not differ from other NA-treated patients as a result of effective salvage treatment used for transformed disease. However, all NA-treated patients who developed t-MDS/AML died at a median of 5 months. CONCLUSION These data demonstrate an increased incidence of disease transformation to high-grade NHL and the development of t-MDS/AML among patients with WM treated with NAs.
Current Cancer Drug Targets | 2011
Barbara C. M. Potts; M. X. Albitar; Kenneth C. Anderson; S. Baritaki; Celia R. Berkers; B. Bonavida; J. Chandra; D Chauhan; James C. Cusack; William Fenical; Irene M. Ghobrial; Michael Groll; Paul R. Jensen; Kin Sing Lam; G. K. Lloyd; W. Mcbride; David J. McConkey; C. P. Miller; Saskia T. C. Neuteboom; Y. Oki; Huib Ovaa; F. Pajonk; Paul G. Richardson; Aldo M. Roccaro; C. M. Sloss; M. A. Spear; E. Valashi; A. Younes; Michael A. Palladino
The proteasome has emerged as an important clinically relevant target for the treatment of hematologic malignancies. Since the Food and Drug Administration approved the first-in-class proteasome inhibitor bortezomib (Velcade) for the treatment of relapsed/refractory multiple myeloma (MM) and mantle cell lymphoma, it has become clear that new inhibitors are needed that have a better therapeutic ratio, can overcome inherent and acquired bortezomib resistance and exhibit broader anti-cancer activities. Marizomib (NPI-0052; salinosporamide A) is a structurally and pharmacologically unique β-lactone-γ-lactam proteasome inhibitor that may fulfill these unmet needs. The potent and sustained inhibition of all three proteolytic activities of the proteasome by marizomib has inspired extensive preclinical evaluation in a variety of hematologic and solid tumor models, where it is efficacious as a single agent and in combination with biologics, chemotherapeutics and targeted therapeutic agents. Specifically, marizomib has been evaluated in models for multiple myeloma, mantle cell lymphoma, Waldenstroms macroglobulinemia, chronic and acute lymphocytic leukemia, as well as glioma, colorectal and pancreatic cancer models, and has exhibited synergistic activities in tumor models in combination with bortezomib, the immunomodulatory agent lenalidomide (Revlimid), and various histone deacetylase inhibitors. These and other studies provided the framework for ongoing clinical trials in patients with MM, lymphomas, leukemias and solid tumors, including those who have failed bortezomib treatment, as well as in patients with diagnoses where other proteasome inhibitors have not demonstrated significant efficacy. This review captures the remarkable translational studies and contributions from many collaborators that have advanced marizomib from seabed to bench to bedside.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Archana Swami; Michaela R. Reagan; Pamela Basto; Yuji Mishima; Nazila Kamaly; Siobhan Glavey; Sufeng Zhang; Michele Moschetta; Dushanth Seevaratnam; Yong Zhang; Jinhe Liu; Masoumeh Memarzadeh; Jun Wu; Salomon Manier; Jinjun Shi; Nicolas Bertrand; Zhi Ning Lu; Kenichi Nagano; Roland Baron; Antonio Sacco; Aldo M. Roccaro; Omid C. Farokhzad; Irene M. Ghobrial
Significance Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic breast, prostate, and blood cancers. The difficulty of eliminating bone-residing cancer necessitates novel, alternative treatments to manipulate the tumor cells and their microenvironment, with minimal off-target effects. To this end, we engineered bone-homing, stealth nanoparticles to deliver anticancer, bone-stimulatory drugs, and demonstrated their utility with bortezomib (a model drug) and multiple myeloma (a model cancer). To test our hypothesis that increasing bone volume and strength inhibits tumor growth, mice were treated with these nanoparticles before being injected with cancer cells. Results demonstrated significantly slower myeloma growth and prolonged survival. Our research demonstrates the potential of bone-homing nanomedicine as an efficacious cancer treatment mechanism. Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.
BioMed Research International | 2012
Salomon Manier; Antonio Sacco; Xavier Leleu; Irene M. Ghobrial; Aldo M. Roccaro
Substantial advances have been made in understanding the biology of multiple myeloma (MM) through the study of the bone marrow (BM) microenvironment. Indeed, the BM niche appears to play an important role in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM niche is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a noncellular compartment including the extracellular matrix (ECM) and the liquid milieu (cytokines, growth factors, and chemokines). In this paper we discuss how the interaction between the malignant plasma cell and the BM microenvironment allowed myeloma progression through cell homing and the new concept of premetastatic niche.