Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia Maiso is active.

Publication


Featured researches published by Patricia Maiso.


Cancer Research | 2006

The Histone Deacetylase Inhibitor LBH589 Is a Potent Antimyeloma Agent that Overcomes Drug Resistance

Patricia Maiso; Xonia Carvajal-Vergara; Enrique M. Ocio; Ricardo López-Pérez; Gema Mateo; Norma C. Gutiérrez; Peter Atadja; Atanasio Pandiella; Jesús F. San Miguel

Multiple myeloma represents an incurable disease, for which development of new therapies is required. Here, we report the effect on myeloma cells of LBH589, a new hydroxamic acid-derived histone deacetylase inhibitor. LBH589 was a potent antimyeloma agent (IC(50) < 40 nmol/L) on both cell lines and fresh cells from multiple myeloma patients, including cells resistant to conventional chemotherapeutic agents. In addition, LBH589 potentiated the action of drugs, such as bortezomib, dexamethasone, or melphalan. Using gene array, quantitative PCR, and Western analyses, we observed that LBH589 affected a large number of genes involved in cell cycle and cell death pathways. LBH589 blocked cell cycle progression, and this was accompanied by p21, p53, and p57 up-regulation. LBH589 induced cell death through an increase in the mitochondrial outer membrane permeability. LBH589 favored apoptosome formation by inducing cytochrome c release, Apaf-1 up-regulation, and caspase-9 cleavage. In addition, LBH589 stimulated a caspase-independent pathway through the release of AIF from the mitochondria. LBH589 down-regulated Bcl-2 and particularly Bcl-X. Moreover, overexpression of Bcl-X in multiple myeloma cells prevented LBH589-induced cell death. All these data indicate that LBH589 could be a useful drug for the treatment of multiple myeloma patients.


Blood | 2012

Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features

Abdel Kareem Azab; Jinsong Hu; Phong Quang; Feda Azab; Costas Pitsillides; Rana Awwad; Brian Thompson; Patricia Maiso; Jessica Sun; Charles P. Hart; Aldo M. Roccaro; Antonio Sacco; Hai T. Ngo; Charles P. Lin; Andrew L. Kung; Ruben D. Carrasco; Karin Vanderkerken; Irene M. Ghobrial

The spread of multiple myeloma (MM) involves (re)circulation into the peripheral blood and (re)entrance or homing of MM cells into new sites of the BM. Hypoxia in solid tumors was shown to promote metastasis through activation of proteins involved in the epithelial-mesenchymal transition (EMT) process. We hypothesized that MM-associated hypoxic conditions activate EMT-related proteins and promote metastasis of MM cells. In the present study, we have shown that hypoxia activates EMT-related machinery in MM cells, decreases the expression of E-cadherin, and, consequently, decreases the adhesion of MM cells to the BM and enhances egress of MM cells to the circulation. In parallel, hypoxia increased the expression of CXCR4, consequently increasing the migration and homing of circulating MM cells to new BM niches. Further studies to manipulate hypoxia to regulate tumor dissemination as a therapeutic strategy are warranted.


Haematologica | 2010

In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma

Enrique M. Ocio; David Vilanova; Peter Atadja; Patricia Maiso; Edvan Crusoe; Diego Fernández-Lázaro; Mercedes Garayoa; Laura San-Segundo; Teresa Hernández-Iglesias; Enrique de Alava; Wenlin Shao; Yung-Mae Yao; Atanasio Pandiella; Jesús F. San-Miguel

Background Combinations of drug treatments based on bortezomib or lenalidomide plus steroids have resulted in very high response rates in multiple myeloma. However, most patients still relapse, indicating the need for novel combination partners to increase duration of response or to treat relapsed disease. We explored the antimyeloma activity of triple combinations of these well-established schemes with panobinostat, a novel deacetylase inhibitor with a multi-targeted profile. Design and Methods The activity of these combinations was explored in vitro in cell lines by using MTT and annex-in V, ex vivo by flow cytometry, and in vivo using two different murine models of human myeloma: one bearing a subcutaneous plasmacytoma and another with a disseminated myeloma. Moreover, gene expression profiling and immunohistochemical studies were performed. Results The addition of panobinostat (LBH589) to dexamethasone and either bortezomib or lenalidomide resulted in clear potentiation in multiple myeloma cell lines, freshly isolated plasma cells, and murine models of multiple myeloma. The quantification of the potency of these combinations by using the Chou-Talalay method showed synergistic combination indices for all of them. This effect derived from the deregulation of a cluster of genes that was completely different from the sum of genes affected by the single agents (895 and 1323 genes exclusively deregulated by panobinostat and dexamethasone plus bortezomib or lenalidomide, respectively). Functional experiments, such as annexin V staining, cell cycle analysis, and immunohistochemical studies also supported this potentiation. Anti-myeloma efficacy was confirmed in an extramedullary plasmacytoma model and a disseminated luciferized model, in which panobinostat also provided a marked benefit in bone disease. Conclusions The potent activity, together with the exclusive mechanistic profile, provides the rationale for the clinical evaluation of these drug combinations in multiple myeloma.


Blood | 2012

LNA-mediated anti–miR-155 silencing in low-grade B-cell lymphomas

Yong Zhang; Aldo M. Roccaro; Christopher P. Rombaoa; Ludmila M. Flores; Susanna Obad; Stacey M. Fernandes; Antonio Sacco; Yang Liu; Hai Ngo; Phong Quang; Abdel Kareem Azab; Feda Azab; Patricia Maiso; Michaela R. Reagan; Jennifer R. Brown; To-Ha Thai; Sakari Kauppinen; Irene M. Ghobrial

miR-155 acts as an oncogenic miR in B-cell lymphoproliferative disorders, including Waldenstrom macroglobulinemia (WM) and chronic lymphocytic leukemia, and is therefore a potential target for therapeutic intervention. However, efficient targeting of miRs in tumor cells in vivo remains a significant challenge for the development of miR-155-based therapeutics for the treatment of B-cell malignancies. In the present study, we show that an 8-mer locked nucleic acid anti-miR-155 oligonucleotide targeting the seed region of miR-155 inhibits WM and chronic lymphocytic leukemia cell proliferation in vitro. Moreover, anti-miR-155 delivered systemically showed uptake in the BM CD19(+) cells of WM-engrafted mice, resulting in the up-regulation of several miR-155 target mRNAs in these cells, and decreased tumor growth significantly in vivo. We also found miR-155 levels to be elevated in stromal cells from WM patients compared with control samples. Interestingly, stromal cells from miR-155-knockout mice led to significant inhibition of WM tumor growth, indicating that miR-155 may also contribute to WM proliferation through BM microenvironmental cells. The results of the present study highlight the therapeutic potential of anti-miR-155-mediated inhibition of miR-155 in the treatment of WM.


Blood | 2014

C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma

Aldo M. Roccaro; Antonio Sacco; Cristina Jiménez; Patricia Maiso; Michele Moschetta; Yuji Mishima; Yosra Aljawai; Ilyas Sahin; Michelle Kuhne; Pina M. Cardarelli; Lewis J. Cohen; Jesús F. San Miguel; Ramón García-Sanz; Irene M. Ghobrial

The C-X-C chemokine receptor type 4 (CXCR4) plays a crucial role in modulating cell trafficking in hematopoietic stem cells and clonal B cells. We screened 418 patients with B-cell lymphoproliferative disorders and described the presence of the C1013G/CXCR4 warts, hypogammaglobulinemia, infections, and myelokathexis-associated mutation in 28.2% (37/131) of patients with lymphoplasmacytic lymphoma (Waldenström macroglobulinemia [WM]), being either absent or present in only 7% of other B-cell lymphomas. In vivo functional characterization demonstrates its activating role in WM cells, as demonstrated by significant tumor proliferation and dissemination to extramedullary organs, leading to disease progression and decreased survival. The use of a monoclonal antibody anti-CXCR4 led to significant tumor reduction in a C1013G/CXCR4 WM model, whereas drug resistance was observed in mutated WM cells exposed to Brutons tyrosine kinase, mammalian target of rapamycin, and phosphatidylinositol 3-kinase inhibitors, but not proteasome inhibitors. These findings demonstrate that C1013G/CXCR4 is an activating mutation in WM and support its role as a critical regulator of WM molecular pathogenesis and as an important therapeutic target.


Blood | 2010

Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia

Aldo M. Roccaro; Antonio Sacco; Emanuel N. Husu; Costas Pitsillides; Steven Vesole; Abdel Kareem Azab; Feda Azab; Molly R. Melhem; Hai T. Ngo; Phong Quang; Patricia Maiso; Judith Runnels; Mei Chih Liang; Kwok-Kin Wong; Charles P. Lin; Irene M. Ghobrial

We have previously shown clinical activity of a mammalian target of rapamycin (mTOR) complex 1 inhibitor in Waldenstrom macroglobulinemia (WM). However, 50% of patients did not respond to therapy. We therefore examined mechanisms of activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR in WM, and mechanisms of overcoming resistance to therapy. We first demonstrated that primary WM cells show constitutive activation of the PI3K/Akt pathway, supported by decreased expression of phosphate and tensin homolog tumor suppressor gene (PTEN) at the gene and protein levels, together with constitutive activation of Akt and mTOR. We illustrated that dual targeting of the PI3K/mTOR pathway by the novel inhibitor NVP-BEZ235 showed higher cytotoxicity on WM cells compared with inhibition of the PI3K or mTOR pathways alone. In addition, NVP-BEZ235 inhibited both rictor and raptor, thus abrogating the rictor-induced Akt phosphorylation. NVP-BEZ235 also induced significant cytotoxicity in WM cells in a caspase-dependent and -independent manner, through targeting the Forkhead box transcription factors. In addition, NVP-BEZ235 targeted WM cells in the context of bone marrow microenvironment, leading to significant inhibition of migration, adhesion in vitro, and homing in vivo. These studies therefore show that dual targeting of the PI3K/mTOR pathway is a better modality of targeted therapy for tumors that harbor activation of the PI3K/mTOR signaling cascade, such as WM.


Blood | 2010

microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia

Aldo M. Roccaro; Antonio Sacco; Xiaoying Jia; Abdel Kareem Azab; Patricia Maiso; Hai T. Ngo; Feda Azab; Judith Runnels; Phong Quang; Irene M. Ghobrial

Waldenström macroglobulinemia (WM) cells present with increased expression of microRNA-206 (miRNA-206) and reduced expression of miRNA-9*. Predicted miRNA-206- and -9*-targeted genes include histone deacetylases (HDACs) and histone acetyl transferases (HATs), indicating that these miRNAs may play a role in regulating histone acetylation. We were able to demonstrate that primary WM cells are characterized by unbalanced expression of HDACs and HATs, responsible for decreased acetylated histone-H3 and -H4, and increased HDAC activity. We next examined whether miRNA-206 and -9* modulate the aberrant expression of HDAC and HATs in WM cells leading to increased transcriptional activity. We found that restoring miRNA-9* levels induced toxicity in WM cells, supported by down-modulation of HDAC4 and HDAC5 and up-regulation of acetyl-histone-H3 and -H4. These, together with inhibited HDAC activity, led to induction of apoptosis and autophagy in WM cells. To further confirm that miRNA-9*-dependent modulation of histone acetylation is responsible for induction of WM cytotoxicity, a novel class of HDAC inhibitor (LBH589) was used; we confirmed that inhibition of HDAC activity leads to toxicity in this disease. These findings confirm that histone-modifying genes and HDAC activity are deregulated in WM cells, partially driven by the aberrant expression of miRNA-206 and -9* in the tumor clone.


Blood | 2010

Selective inhibition of chymotrypsin-like activity of the immunoproteasome and constitutive proteasome in Waldenström macroglobulinemia

Aldo M. Roccaro; Antontio Sacco; Monette Aujay; Hai T. Ngo; Abdel Kareem Azab; Feda Azab; Phong Quang; Patricia Maiso; Judith Runnels; Kenneth C. Anderson; Susan Demo; Irene M. Ghobrial

Proteasome inhibition represents a valid antitumor approach and its use has been validated in Waldenström macroglobulinemia (WM), where bortezomib has been successfully tested in clinical trials. Nevertheless, a significant fraction of patients relapses, and many present toxicity due to its off-target effects. Selective inhibition of the chymotrypsin-like (CT-L) activity of constitutive proteasome 20S (c20S) and immunoproteasome 20S (i20S) represents a sufficient and successful strategy to induce antineoplastic effect in hematologic tumors. We therefore studied ONX0912, a novel selective, irreversible inhibitor of the CT-L activity of i20S and c20S. Primary WM cells express higher level of i20S compared with c20S, and that ONX0912 inhibited the CT-L activity of both i20S and c20S, leading to induction of toxicity in primary WM cells, as well as of apoptosis through c-Jun N-terminal kinase activation, nuclear factor kappaB (NF-kappaB) inhibition, caspase cleavage, and initiation of the unfolded protein response. Importantly, ONX0912 exerted toxicity in WM cells, by reducing bone marrow (BM)-derived interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1) secretion, thus inhibiting BM-induced p-Akt and phosphorylated extracellular signal-related kinase (p-ERK) activation in WM cells. These findings suggest that targeting i20S and c20S CT-L activity by ONX0912 represents a valid antitumor therapy in WM.


Cancer Research | 2008

Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo

Constantine S. Mitsiades; Enrique M. Ocio; Atanasio Pandiella; Patricia Maiso; Consuelo Gajate; Mercedes Garayoa; David Vilanova; Juan Carlos Montero; Nicholas Mitsiades; Ciaran J. McMullan; Nikhil C. Munshi; Teru Hideshima; Dharminder Chauhan; Pablo Aviles; Gabriel Otero; Glynn Faircloth; M. Victoria Mateos; Paul G. Richardson; Faustino Mollinedo; Jesús F. San-Miguel; Kenneth C. Anderson

Despite recent progress in its treatment, multiple myeloma (MM) remains incurable, thus necessitating identification of novel anti-MM agents. We report that the marine-derived cyclodepsipeptide Aplidin exhibits, at clinically achievable concentrations, potent in vitro activity against primary MM tumor cells and a broad spectrum of human MM cell lines, including cells resistant to conventional (e.g., dexamethasone, alkylating agents, and anthracyclines) or novel (e.g., thalidomide and bortezomib) anti-MM agents. Aplidin is active against MM cells in the presence of proliferative/antiapoptotic cytokines or bone marrow stromal cells and has additive or synergistic effects with some of the established anti-MM agents. Mechanistically, a short in vitro exposure to Aplidin induces MM cell death, which involves activation of p38 and c-jun NH(2)-terminal kinase signaling, Fas/CD95 translocation to lipid rafts, and caspase activation. The anti-MM effect of Aplidin is associated with suppression of a constellation of proliferative/antiapoptotic genes (e.g., MYC, MYBL2, BUB1, MCM2, MCM4, MCM5, and survivin) and up-regulation of several potential regulators of apoptosis (including c-JUN, TRAIL, CASP9, and Smac). Aplidin exhibited in vivo anti-MM activity in a mouse xenograft model. The profile of the anti-MM activity of Aplidin in our preclinical models provided the framework for its clinical testing in MM, which has already provided favorable preliminary results.


Lancet Oncology | 2011

Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study.

Irene M. Ghobrial; Edie Weller; Ravi Vij; Nikhil C. Munshi; Ranjit Banwait; Meghan Bagshaw; Robert Schlossman; Renee Leduc; Stacey Chuma; Janet Kunsman; Jacob P. Laubach; Andrzej J. Jakubowiak; Patricia Maiso; Aldo M. Roccaro; Philippe Armand; Akari M. Dollard; Diane Warren; Brianna Harris; Tiffany Poon; Amy Sam; Scott J. Rodig; Kenneth C. Anderson; Paul G. Richardson

BACKGROUND Multiple myeloma is the second most prevalent haematological malignancy and is incurable. Our aim was to assess the response and safety of the combination of temsirolimus (an mTOR inhibitor) and bortezomib in patients with relapsed or refractory multiple myeloma. METHODS We did an open-label, dose-escalation study in three centres in the USA. Patients were enrolled from June, 2007, to December, 2009. Eligible patients were aged 18 years or older with relapsed or relapsed and refractory multiple myeloma after one or more treatment (including lenalidomide, bortezomib, or thalidomide), with an Eastern Cooperative Oncology Group performance status of 0-2. Patients were assigned a dose level in the order of their entry into the study. Phase 1 was to assess the safety and establish the maximum tolerated dose (MTD) of the combination and phase 2 was to assess overall response rate at the MTD. Intravenous temsirolimus was given at 15 or 25 mg and intravenous bortezomib at 1·3 or 1·6 mg/m(2) once a week, with dose escalation until dose-limiting adverse events were recorded in two of the three people in the dose cohort. Use of steroids were not permitted. The primary endpoint was the proportion of patients with a partial response or better. Analyses were done on an intention-to-treat basis, with all patients who had been enrolled included. The study is registered with ClinicalTrials.gov, number NCT00483262. FINDINGS 20 patients were enrolled into the phase 1 study and 43 into phase 2. All patients were heavily pretreated (median five lines in the phase 1 cohort, and four lines in the phase 2 cohort). The MTD was determined to be 1·6 mg/m(2) bortezomib on days 1, 8, 15, and 22 in combination with 25 mg temsirolimus on days 1, 8, 15, 22, and 29, for a cycle of 35 days. In the phase 2 study, the proportion of patients with a partial response or better was 33% (14 of 43; 90% CI 21-47). Long-term follow-up of patients is ongoing. There were three deaths during treatment in the phase 1 and 2 studies: one patient died of septic shock in the phase 1 study; one patient died with H1N1 influenza infection and one died with cardiac amyloid and ventricular arrhythmia unrelated to treatment in the phase 2 study. In the phase 1 study, the most common treatment-related grade 3-4 adverse events were thrombocytopenia (13 patients), lymphopenia (ten), neutropenia (nine), leucopenia (seven), and anaemia (five). In the phase 2 study, the most common treatment-related grade 3-4 adverse events were thrombocytopenia (25 patients), lymphopenia (24), neutropenia (17), leucopenia (ten), anaemia (seven), and diarrhoea (five). Four patients in the phase 1 study had sensory peripheral neuropathy (grade 2 or less); in the phase 2 study, 11 had sensory peripheral neuropathy (all grade 2 or less) and seven motor peripheral neuropathy (one grade 3, six grade 2 or less). INTERPRETATION mTOR inhibitors could have a role in combination with weekly bortezomib for the treatment of patients with relapsed and refractory multiple myeloma without the addition of steroids. FUNDING Millennium Inc, Pfizer Inc, Multiple Myeloma Research Foundation, and the Leukemia and Lymphoma Society.

Collaboration


Dive into the Patricia Maiso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdel Kareem Azab

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Feda Azab

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge