Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene M. Ghobrial is active.

Publication


Featured researches published by Irene M. Ghobrial.


Cell | 2011

BET Bromodomain Inhibition as a Therapeutic Strategy to Target c-Myc

Jake Delmore; Ghayas C Issa; Madeleine E. Lemieux; Peter B. Rahl; Junwei Shi; Hannah M. Jacobs; Efstathios Kastritis; Timothy Gilpatrick; Ronald M. Paranal; Jun Qi; Marta Chesi; Anna C. Schinzel; Michael R. McKeown; Timothy P. Heffernan; Christopher R. Vakoc; P. Leif Bergsagel; Irene M. Ghobrial; Paul G. Richardson; Richard A. Young; William C. Hahn; Kenneth C. Anderson; Andrew L. Kung; James E. Bradner; Constantine S. Mitsiades

MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.


CA: A Cancer Journal for Clinicians | 2005

Targeting Apoptosis Pathways in Cancer Therapy

Irene M. Ghobrial; Thomas E. Witzig; Alex A. Adjei

Apoptosis, or programmed cell death, is a mechanism by which cells undergo death to control cell proliferation or in response to DNA damage. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy. These novel agents include those targeting the extrinsic pathway such as tumor necrosis factor‐related apoptosis‐inducing ligand receptor 1, and those targeting the intrinsic Bcl‐2 family pathway such as antisense bcl‐2 oligonucleotides. Many pathways and proteins control the apoptosis machinery. Examples include p53, the nuclear factor kappa B, the phosphatidylinositol 3 kinase pathway, and the ubiquitin/proteosome pathway. These can be targeted by specific modulators such as bortezomib, and mammalian target of rapamycin inhibitors such as CCI‐779 and RAD 001. Because these pathways may be preferentially altered in tumor cells, there is potential for a selective effect in tumors sparing normal tissue. This article reviews the current understanding of the apoptotic pathways, including the extrinsic (cytoplasmic) and intrinsic (mitochondrial) pathways, and the agents being developed to target these pathways.


Journal of extracellular vesicles | 2015

Biological properties of extracellular vesicles and their physiological functions.

María Yáñez-Mó; Pia Siljander; Zoraida Andreu; Apolonija Bedina Zavec; Francesc E. Borràs; Edit I. Buzás; Krisztina Buzás; Enriqueta Casal; Francesco Cappello; Joana Carvalho; Eva Colas; Anabela Cordeiro da Silva; Stefano Fais; Juan M. Falcon-Perez; Irene M. Ghobrial; Bernd Giebel; Mario Gimona; Michael W. Graner; Ihsan Gursel; Mayda Gursel; Niels H. H. Heegaard; An Hendrix; Peter Kierulf; Katsutoshi Kokubun; Maja Kosanović; Veronika Kralj-Iglič; Eva-Maria Krämer-Albers; Saara Laitinen; Cecilia Lässer; Thomas Lener

In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.


Blood | 2010

Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma.

Paul G. Richardson; Edie Weller; Sagar Lonial; Andrzej J. Jakubowiak; Sundar Jagannath; Noopur Raje; David Avigan; Wanling Xie; Irene M. Ghobrial; Robert Schlossman; Amitabha Mazumder; Nikhil C. Munshi; David H. Vesole; Robin Joyce; Jonathan L. Kaufman; Deborah Doss; Diane Warren; Laura E. Lunde; Sarah Kaster; Carol Delaney; Teru Hideshima; Constantine S. Mitsiades; Robert Knight; Dixie-Lee Esseltine; Kenneth C. Anderson

This phase 1/2 study is the first prospective evaluation of lenalidomide-bortezomib-dexamethasone in front-line myeloma. Patients (N = 66) received 3-week cycles (n = 8) of bortezomib 1.0 or 1.3 mg/m(2) (days 1, 4, 8, 11), lenalidomide 15 to 25 mg (days 1-14), and dexamethasone 40 or 20 mg (days 1, 2, 4, 5, 8, 9, 11, 12). Responding patients proceeded to maintenance or transplantation. Phase 2 dosing was determined to be bortezomib 1.3 mg/m(2), lenalidomide 25 mg, and dexamethasone 20 mg. Most common toxicities included sensory neuropathy (80%) and fatigue (64%), with only 27%/2% and 32%/3% grade 2/3, respectively. In addition, 32% reported neuropathic pain (11%/3%, grade 2/3). Grade 3/4 hematologic toxicities included lymphopenia (14%), neutropenia (9%), and thrombocytopenia (6%). Thrombosis was rare (6% overall), and no treatment-related mortality was observed. Rate of partial response was 100% in both the phase 2 population and overall, with 74% and 67% each achieving very good partial response or better. Twenty-eight patients (42%) proceeded to undergo transplantation. With median follow-up of 21 months, estimated 18-month progression-free and overall survival for the combination treatment with/without transplantation were 75% and 97%, respectively. Lenalidomide-bortezomib-dexamethasone demonstrates favorable tolerability and is highly effective in the treatment of newly diagnosed myeloma. This study is registered at http://clinicaltrials.gov as NCT00378105.


Journal of Clinical Oncology | 2005

Phase II Trial of Single-Agent Temsirolimus (CCI-779) for Relapsed Mantle Cell Lymphoma

Thomas E. Witzig; Susan Geyer; Irene M. Ghobrial; David J. Inwards; Rafael Fonseca; Paul J. Kurtin; Stephen M. Ansell; Ronnie F. Luyun; Patrick J. Flynn; Roscoe F. Morton; Shaker R. Dakhil; Howard M. Gross; Scott H. Kaufmann

PURPOSE Mantle cell lymphoma (MCL) is characterized by a t(11;14) resulting in overexpression of cyclin D1 messenger RNA. This study tested whether temsirolimus (previously known as CCI-779), an inhibitor of the mammalian target of rapamycin kinase that regulates cyclin D1 translation, could produce tumor responses in patients with MCL. PATIENTS AND METHODS Patients with relapsed or refractory MCL were eligible to receive temsirolimus 250 mg intravenously every week as a single agent. Patients with a tumor response after six cycles were eligible to continue drug for a total of 12 cycles or two cycles after complete remission, and were then observed without maintenance. RESULTS Thirty-five patients were enrolled and were assessable for toxicity; one patient had MCL by histology but was cyclin D1 negative and was ineligible for efficacy. The median age was 70 years (range, 38 to 89 years), 91% were stage 4, and 69% had two or more extranodal sites. Patients had received a median of three prior therapies (range, one to 11), and 54% were refractory to the last treatment. The overall response rate was 38% (13 of 34 patients; 90% CI, 24% to 54%) with one complete response (3%) and 12 partial responses (35%). The median time-to-progression in all patients was 6.5 months (95% CI, 2.9 to 8.3 months), and the duration of response for the 13 responders was 6.9 months (95% CI, 5.2 to 12.4 months). Hematologic toxicities were the most common, with 71% (25 of 35 patients) having grade 3 and 11% (four of 35 patients) having grade 4 toxicities observed. Thrombocytopenia was the most frequent cause of dose reductions but was of short duration, typically resolving within 1 week. CONCLUSIONS Single-agent temsirolimus has substantial antitumor activity in relapsed MCL. This study demonstrates that agents that selectively target cellular pathways dysregulated in MCL cells can produce therapeutic benefit. Further studies of this agent in MCL and other lymphoid malignancies are warranted.


Blood | 2009

CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy

Abdel Kareem Azab; Judith Runnels; Costas Pitsillides; Anne-Sophie Moreau; Feda Azab; Xavier Leleu; Xiaoying Jia; Renee Wright; Beatriz Ospina; Alicia L. Carlson; Clemens Alt; Nicholas Burwick; Aldo M. Roccaro; Hai T. Ngo; Mena Farag; Molly R. Melhem; Antonio Sacco; Nikhil C. Munshi; Teru Hideshima; Barrett J. Rollins; Kenneth C. Anderson; Andrew L. Kung; Charles P. Lin; Irene M. Ghobrial

The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.


The New England Journal of Medicine | 2015

Ibrutinib in Previously Treated Waldenström's Macroglobulinemia

Abstr Act; Steven P. Treon; Christina Tripsas; Kirsten Meid; Diane Warren; Gaurav Varma; Rebecca Green; Kimon V. Argyropoulos; Guang Yang; Yang Cao; Lian Xu; Christopher J. Patterson; Scott J. Rodig; James L. Zehnder; Nancy Lee Harris; Sandra Kanan; Irene M. Ghobrial; Jorge J. Castillo; Jacob P. Laubach; Zachary R. Hunter; Zeena Salman; Jianling Li; Mei Cheng; Fong Clow; Thorsten Graef; M. Lia Palomba; Ranjana H. Advani

BACKGROUND MYD88(L265P) and CXCR4(WHIM) mutations are highly prevalent in Waldenströms macroglobulinemia. MYD88(L265P) triggers tumor-cell growth through Brutons tyrosine kinase, a target of ibrutinib. CXCR4(WHIM) mutations confer in vitro resistance to ibrutinib. METHODS We performed a prospective study of ibrutinib in 63 symptomatic patients with Waldenströms macroglobulinemia who had received at least one previous treatment, and we investigated the effect of MYD88 and CXCR4 mutations on outcomes. Ibrutinib at a daily dose of 420 mg was administered orally until disease progression or the development of unacceptable toxic effects. RESULTS After the patients received ibrutinib, median serum IgM levels decreased from 3520 mg per deciliter to 880 mg per deciliter, median hemoglobin levels increased from 10.5 g per deciliter to 13.8 g per deciliter, and bone marrow involvement decreased from 60% to 25% (P<0.01 for all comparisons). The median time to at least a minor response was 4 weeks. The overall response rate was 90.5%, and the major response rate was 73.0%; these rates were highest among patients with MYD88(L265P)CXCR4(WT) (with WT indicating wild-type) (100% overall response rate and 91.2% major response rate), followed by patients with MYD88(L265P)CXCR4(WHIM) (85.7% and 61.9%, respectively) and patients with MYD88(WT)CXCR4(WT) (71.4% and 28.6%). The estimated 2-year progression-free and overall survival rates among all patients were 69.1% and 95.2%, respectively. Treatment-related toxic effects of grade 2 or higher included neutropenia (in 22% of the patients) and thrombocytopenia (in 14%), which were more common in heavily pretreated patients; postprocedural bleeding (in 3%); epistaxis associated with the use of fish-oil supplements (in 3%); and atrial fibrillation associated with a history of arrhythmia (5%). CONCLUSIONS Ibrutinib was highly active, associated with durable responses, and safe in pretreated patients with Waldenströms macroglobulinemia. MYD88 and CXCR4 mutation status affected responses to this drug. (Funded by Pharmacyclics and others; ClinicalTrials.gov number, NCT01614821.).


Leukemia | 2011

A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma

Thomas E. Witzig; Craig B. Reeder; Betsy LaPlant; Mamta Gupta; Patrick B. Johnston; Ivana N. Micallef; Luis F. Porrata; S M Ansell; Joseph P. Colgan; Eric D. Jacobsen; Irene M. Ghobrial; Thomas M. Habermann

The phosphatidylinositol 3-kinase signal transduction pathway members are often activated in tumor samples from patients with non-Hodgkins lymphoma (NHL). Everolimus is an oral agent that targets the raptor mammalian target of rapamycin (mTORC1). The goal of this trial was to learn the antitumor activity and toxicity of single-agent everolimus in patients with relapsed/refractory aggressive NHL. Patients received everolimus 10 mg PO daily. Response was assessed after two and six cycles, and then every three cycles until progression. A total of 77 patients with a median age of 70 years were enrolled. Patients had received a median of three previous therapies and 32% had undergone previous transplant. The overall response rate (ORR) was 30% (95% confidence interval: 20–41%), with 20 patients achieving a partial remission and 3 a complete remission unconfirmed. The ORR in diffuse large B cell was 30% (14/47), 32% (6/19) in mantle cell and 38% (3/8) in follicular grade 3. The median duration of response was 5.7 months. Grade 3 or 4 anemia, neutropenia and thrombocytopenia occurred in 14, 18 and 38% of patients, respectively. Everolimus has single-agent activity in relapsed/refractory aggressive NHL and provides proof-of-concept that targeting the mTOR pathway is clinically relevant.


Blood | 2009

MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma

Aldo M. Roccaro; Antonio Sacco; Brian Thompson; Xavier Leleu; Abdel Kareem Azab; Feda Azab; Judith Runnels; Xiaoying Jia; Hai T. Ngo; Molly R. Melhem; Charles P. Lin; Domenico Ribatti; Barrett J. Rollins; Thomas E. Witzig; Kenneth C. Anderson; Irene M. Ghobrial

Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138(+) MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-kappaB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM.


Journal of Clinical Oncology | 2009

Update on Treatment Recommendations From the Fourth International Workshop on Waldenström's Macroglobulinemia

Meletios A. Dimopoulos; Morie A. Gertz; Efstathios Kastritis; Ramón García-Sanz; Eva Kimby; Véronique Leblond; Jean Paul Fermand; Giampaolo Merlini; Pierre Morel; Enrica Morra; Enrique M. Ocio; Roger Owen; Irene M. Ghobrial; John F. Seymour; Robert A. Kyle; Steven P. Treon

Waldenström macroglobulinemia (WM) is a distinct B-cell lymphoproliferative disorder characterized by lymphoplasmacytic bone marrow infiltration along with an immunoglobulin M (IgM) monoclonal gammopathy. Patients with disease-related cytopenias, bulky adenopathy or organomegaly, symptomatic hyperviscosity, severe neuropathy, amyloidosis, cryoglobulinemia, cold agglutinin disease, or evidence of disease transformation should be considered for immediate therapy. Initiation of therapy should not be based on serum IgM levels alone, and asymptomatic patients should be observed. Individual patient considerations should be considered when deciding on a first-line agent including the presence of cytopenias, need for rapid disease control, age, and candidacy for autologous transplantation. Therapeutic outcomes should be evaluated using updated criteria. As part of the Fourth International Workshop on Waldenströms Macroglobulinemia, a consensus panel updated its recommendations on both first-line and salvage therapy in view of recently published and ongoing clinical trials. The panel considered encouraging results from recent studies of first-line combinations such as rituximab with nucleoside analogs with or without alkylating agents or with cyclophosphamide-based therapies (eg, cyclophosphamide, doxorubicin, vincristine, and prednisone or cyclophosphamide and dexamethasone) or the combination of rituximab with thalidomide. Such therapeutic approaches are likely to yield responses at least as good as, if not better than, monotherapy with any of the alkylating agents, nucleoside analogs, or rituximab. In the salvage setting, reuse of a first-line regimen or use of a different regimen should be considered along with bortezomib, alemtuzumab, autologous transplantation, and, in selected circumstances, allogeneic transplantation. Finally, the panel reaffirmed its encouragement of the active enrollment of patients with WM onto innovative clinical trials whenever possible.

Collaboration


Dive into the Irene M. Ghobrial's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdel Kareem Azab

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Feda Azab

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge