Alejandra García
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alejandra García.
Journal of Biological Chemistry | 2009
Alejandra Espinosa; Alejandra García; Steffen Härtel; Cecilia Hidalgo; Enrique Jaimovich
Skeletal muscle is one of the main physiological targets of insulin, a hormone that triggers a complex signaling cascade and that enhances the production of reactive oxygen species (ROS) in different cell types. ROS, currently considered second messengers, produce redox modifications in proteins such as ion channels that induce changes in their functional properties. In myotubes, insulin also enhances calcium release from intracellular stores. In this work, we studied in myotubes whether insulin stimulated ROS production and investigated the mechanisms underlying the insulin-dependent calcium increase: in particular, whether the late phase of the Ca2+ increase induced by insulin required ROS. We found that insulin stimulated ROS production, as detected with the probe 2′,7′-dichlorofluorescein diacetate (CM-H2DCFDA). We used the translocation of p47phox from the cytoplasm to the plasma membrane as a marker of the activation of NADPH oxidase. Insulin-stimulated ROS generation was suppressed by the NADPH oxidase inhibitor apocynin and by small interfering RNA against p47phox, a regulatory NADPH oxidase subunit. Additionally, both protein kinase C and phosphatidylinositol 3-kinase are presumably involved in insulin-induced ROS generation because bisindolylmaleimide, a nonspecific protein kinase C inhibitor, and LY290042, an inhibitor of phosphatidylinositol 3-kinase, inhibited this increase. Bisindolylmaleimide, LY290042, apocynin, small interfering RNA against p47phox, and two drugs that interfere with inositol 1,4,5-trisphosphate-mediated Ca2+ release, xestospongin C and U73122, inhibited the intracellular Ca2+ increase produced by insulin. These combined results strongly suggest that insulin induces ROS generation trough NADPH activation and that this ROS increase is required for the intracellular Ca2+ rise mediated by inositol 1,4,5-trisphosphate receptors.
Biochimica et Biophysica Acta | 2009
Matthias Fidorra; Alejandra García; John Hjort Ipsen; Steffen Härtel; Luis A. Bagatolli
We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along lipid phase diagrams tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes.
Journal of Microscopy | 2010
Omar A. Ramírez; Alejandra García; R. Rojas; Andrés Couve; Steffen Härtel
The quantification of colocalizing signals in multichannel fluorescence microscopy images depends on the reliable segmentation of corresponding regions of interest, on the selection of appropriate colocalization coefficients, and on a robust statistical criterion to discriminate true from random colocalization. Here, we introduce a confined displacement algorithm based on image correlation spectroscopy in combination with Manders colocalization coefficients M1ROI and M2ROI to quantify true and random colocalization of a given florescence pattern. We show that existing algorithms based on block scrambling exaggerate the randomization of fluorescent patterns with resulting inappropriately narrow probability density functions and false significance of true colocalization in terms of p values. We further confine our approach to subcellular compartments and show that true and random colocalization can be analysed for model dendrites and for GABAB receptor subunits GABABR1/2 in cultured hippocampal neurons. Together, we demonstrate that the confined displacement algorithm detects true colocalization of specific fluorescence patterns down to subcellular levels.
Frontiers in Molecular Neuroscience | 2014
Carol D. SanMartín; Andrea C. Paula-Lima; Alejandra García; Pablo Barattini; Steffen Härtel; Marco T. Núñez; Cecilia Hidalgo
Mounting evidence indicates that iron accumulation impairs brain function. We have reported previously that addition of sub-lethal concentrations of iron to primary hippocampal neurons produces Ca2+ signals and promotes cytoplasmic generation of reactive oxygen species. These Ca2+ signals, which emerge within seconds after iron addition, arise mostly from Ca2+ release through the redox-sensitive ryanodine receptor (RyR) channels present in the endoplasmic reticulum. We have reported also that addition of synaptotoxic amyloid-β oligomers to primary hippocampal neurons stimulates RyR-mediated Ca2+ release, generating long-lasting Ca2+ signals that activate Ca2+-sensitive cellular effectors and promote the disruption of the mitochondrial network. Here, we describe that 24 h incubation of primary hippocampal neurons with iron enhanced agonist-induced RyR-mediated Ca2+ release and promoted mitochondrial network fragmentation in 43% of neurons, a response significantly prevented by RyR inhibition and by the antioxidant agent N-acetyl-L-cysteine. Stimulation of RyR-mediated Ca2+ release by a RyR agonist promoted mitochondrial Ca2+ uptake in control neurons and in iron-treated neurons that displayed non-fragmented mitochondria, but not in neurons with fragmented mitochondria. Yet, the global cytoplasmic Ca2+ increase induced by the Ca2+ ionophore ionomycin prompted significant mitochondrial Ca2+ uptake in neurons with fragmented mitochondria, indicating that fragmentation did not prevent mitochondrial Ca2+ uptake but presumably decreased the functional coupling between RyR-mediated Ca2+ release and the mitochondrial Ca2+ uniporter. Taken together, our results indicate that stimulation of redox-sensitive RyR-mediated Ca2+ release by iron causes significant neuronal mitochondrial fragmentation, which presumably contributes to the impairment of neuronal function produced by iron accumulation.
Journal of Structural Biology | 2010
César Cárdenas; Matias Escobar; Alejandra García; María Osorio-Reich; Steffen Härtel; J. Kevin Foskett; Clara Franzini-Armstrong
The receptors for the second messenger InsP(3) comprise a family of closely related ion channels that release Ca(2+) from intracellular stores, most prominently the endoplasmic reticulum and its extension into the nuclear envelope. The precise sub-cellular localization of InsP(3)Rs and the spatial relationships among them are important for the initiation, spatial and temporal properties and propagation of local and global Ca(2+) signals, but the spatial organization of InsP(3)Rs in Ca(2+) stores is poorly characterized. Using nuclei isolated from insect Sf9 cells and freeze-dry rotary shadowing, we have addressed this by directly visualizing the cytoplasmic domain of InsP(3)R located on the cytoplasmic side of the nuclear envelope. Identification of approximately 15 nm structures as the cytoplasmic domain of InsP(3)R was indirectly supported by a marked increase in their frequency after transient transfections with cDNAs for rat types 1 and 3 InsP(3)R, and directly confirmed by gold labeling either with heparin or a specific anti-InsP(3)R antibody. Over-expression of InsP(3)R did not result in the formation of arrays or clusters with channels touching each other. Gold-labeling suggests that the channel amino terminus resides near the center of the cytoplasmic tetrameric quaternary structure. The combination of nuclear isolation with freeze-drying and rotary shadow techniques allows direct visualization of InsP(3)Rs in native nuclear envelopes and can be used to determine their spatial distribution and density.
Frontiers in Molecular Neuroscience | 2017
Carol D. SanMartín; Pablo Veloso; Tatiana Adasme; Pedro Lobos; Barbara Bruna; José Luis Galaz; Alejandra García; Steffen Härtel; Cecilia Hidalgo; Andrea C. Paula-Lima
Amyloid β peptide oligomers (AβOs), toxic aggregates with pivotal roles in Alzheimer’s disease, trigger persistent and low magnitude Ca2+ signals in neurons. We reported previously that these Ca2+ signals, which arise from Ca2+ entry and subsequent amplification by Ca2+ release through ryanodine receptor (RyR) channels, promote mitochondrial network fragmentation and reduce RyR2 expression. Here, we examined if AβOs, by inducing redox sensitive RyR-mediated Ca2+ release, stimulate mitochondrial Ca2+-uptake, ROS generation and mitochondrial fragmentation, and also investigated the effects of the antioxidant N-acetyl cysteine (NAC) and the mitochondrial antioxidant EUK-134 on AβOs-induced mitochondrial dysfunction. In addition, we studied the contribution of the RyR2 isoform to AβOs-induced Ca2+ release, mitochondrial Ca2+ uptake and fragmentation. We show here that inhibition of NADPH oxidase type-2 prevented the emergence of RyR-mediated cytoplasmic Ca2+ signals induced by AβOs in primary hippocampal neurons. Treatment with AβOs promoted mitochondrial Ca2+ uptake and increased mitochondrial superoxide and hydrogen peroxide levels; ryanodine, at concentrations that suppress RyR activity, prevented these responses. The antioxidants NAC and EUK-134 impeded the mitochondrial ROS increase induced by AβOs. Additionally, EUK-134 prevented the mitochondrial fragmentation induced by AβOs, as previously reported for NAC and ryanodine. These findings show that both antioxidants, NAC and EUK-134, prevented the Ca2+-mediated noxious effects of AβOs on mitochondrial function. Our results also indicate that Ca2+ release mediated by the RyR2 isoform causes the deleterious effects of AβOs on mitochondrial function. Knockdown of RyR2 with antisense oligonucleotides reduced by about 50% RyR2 mRNA and protein levels in primary hippocampal neurons, decreased by 40% Ca2+ release induced by the RyR agonist 4-chloro-m-cresol, and significantly reduced the cytoplasmic and mitochondrial Ca2+ signals and the mitochondrial fragmentation induced by AβOs. Based on our results, we propose that AβOs-induced Ca2+ entry and ROS generation jointly stimulate RyR2 activity, causing mitochondrial Ca2+ overload and fragmentation in a feed forward injurious cycle. The present novel findings highlight the specific participation of RyR2-mediated Ca2+ release on AβOs-induced mitochondrial malfunction.
Cardiovascular Research | 2008
Valentina Parra; Verónica Eisner; Mario Chiong; Alfredo Criollo; Francisco Moraga; Alejandra García; Steffen Härtel; Enrique Jaimovich; Antonio Zorzano; Cecilia Hidalgo; Sergio Lavandero
Revista Medica De Chile | 2011
Fabrizzio Horta; Marcia Madariaga; Alejandra García; Steffen Härtel; Rosita Smith
Cuadernos médico sociales (Santiago) | 2008
Alejandra García
Biophysical Journal | 2009
Laura R. Arriaga; John Hjort Ipsen; Alejandra García; Steffen Härtel; Francisco Monroy; Luis A. Bagatolli