Steffen Härtel
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steffen Härtel.
Journal of Biological Chemistry | 2009
Alejandra Espinosa; Alejandra García; Steffen Härtel; Cecilia Hidalgo; Enrique Jaimovich
Skeletal muscle is one of the main physiological targets of insulin, a hormone that triggers a complex signaling cascade and that enhances the production of reactive oxygen species (ROS) in different cell types. ROS, currently considered second messengers, produce redox modifications in proteins such as ion channels that induce changes in their functional properties. In myotubes, insulin also enhances calcium release from intracellular stores. In this work, we studied in myotubes whether insulin stimulated ROS production and investigated the mechanisms underlying the insulin-dependent calcium increase: in particular, whether the late phase of the Ca2+ increase induced by insulin required ROS. We found that insulin stimulated ROS production, as detected with the probe 2′,7′-dichlorofluorescein diacetate (CM-H2DCFDA). We used the translocation of p47phox from the cytoplasm to the plasma membrane as a marker of the activation of NADPH oxidase. Insulin-stimulated ROS generation was suppressed by the NADPH oxidase inhibitor apocynin and by small interfering RNA against p47phox, a regulatory NADPH oxidase subunit. Additionally, both protein kinase C and phosphatidylinositol 3-kinase are presumably involved in insulin-induced ROS generation because bisindolylmaleimide, a nonspecific protein kinase C inhibitor, and LY290042, an inhibitor of phosphatidylinositol 3-kinase, inhibited this increase. Bisindolylmaleimide, LY290042, apocynin, small interfering RNA against p47phox, and two drugs that interfere with inositol 1,4,5-trisphosphate-mediated Ca2+ release, xestospongin C and U73122, inhibited the intracellular Ca2+ increase produced by insulin. These combined results strongly suggest that insulin induces ROS generation trough NADPH activation and that this ROS increase is required for the intracellular Ca2+ rise mediated by inositol 1,4,5-trisphosphate receptors.
Biochimica et Biophysica Acta | 2009
Matthias Fidorra; Alejandra García; John Hjort Ipsen; Steffen Härtel; Luis A. Bagatolli
We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along lipid phase diagrams tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes.
Journal of Biological Chemistry | 2011
Elena Tortosa; Carolina Montenegro-Venegas; Marion Benoist; Steffen Härtel; Christian González-Billault; José A. Esteban; Jesús Avila
Background: Microtubule-associated protein 1B (MAP1B) is a protein that is prominently expressed during early neuronal development but in adult brain remains in areas with high synaptic plasticity. Results: MAP1B plays an important role in dendritic spine formation and synaptic maturation. Conclusion: A novel function for MAP1B in regulating dendritic spine morphology and synaptic function is indicated. Significance: MAP1B could contribute to adult brain plasticity. Microtubule-associated protein 1B (MAP1B) is prominently expressed during early stages of neuronal development, and it has been implicated in axonal growth and guidance. MAP1B expression is also found in the adult brain in areas of significant synaptic plasticity. Here, we demonstrate that MAP1B is present in dendritic spines, and we describe a decrease in the density of mature dendritic spines in neurons of MAP1B-deficient mice that was accompanied by an increase in the number of immature filopodia-like protrusions. Although these neurons exhibited normal passive membrane properties and action potential firing, AMPA receptor-mediated synaptic currents were significantly diminished. Moreover, we observed a significant decrease in Rac1 activity and an increase in RhoA activity in the post-synaptic densities of adult MAP1B+/− mice when compared with wild type controls. MAP1B+/− fractions also exhibited a decrease in phosphorylated cofilin. Taken together, these results indicate a new and important role for MAP1B in the formation and maturation of dendritic spines, possibly through the regulation of the actin cytoskeleton. This activity of MAP1B could contribute to the regulation of synaptic activity and plasticity in the adult brain.
Development | 2010
Pablo Oteiza; Mathias Köppen; Michael Krieg; Eduardo Pulgar; Cecilia Farias; Cristina Melo; Stephan Preibisch; Daniel J. Müller; Masazumi Tada; Steffen Härtel; Carl-Philipp Heisenberg; Miguel L. Concha
Organ formation requires the precise assembly of progenitor cells into a functional multicellular structure. Mechanical forces probably participate in this process but how they influence organ morphogenesis is still unclear. Here, we show that Wnt11- and Prickle1a-mediated planar cell polarity (PCP) signalling coordinates the formation of the zebrafish ciliated laterality organ (Kupffers vesicle) by regulating adhesion properties between organ progenitor cells (the dorsal forerunner cells, DFCs). Combined inhibition of Wnt11 and Prickle1a reduces DFC cell-cell adhesion and impairs their compaction and arrangement during vesicle lumen formation. This leads to the formation of a mis-shapen vesicle with small fragmented lumina and shortened cilia, resulting in severely impaired organ function and, as a consequence, randomised laterality of both molecular and visceral asymmetries. Our results reveal a novel role for PCP-dependent cell adhesion in coordinating the supracellular organisation of progenitor cells during vertebrate laterality organ formation.
Biochimica et Biophysica Acta | 2010
Maria Laura Fanani; Steffen Härtel; Bruno Maggio; Luisina De Tullio; Jorge Jara; Felipe Olmos; Rafael Gustavo Oliveira
In recent years, new evidence in biomembrane research brought about a holistic, supramolecular view on membrane-mediated signal transduction. The consequences of sphingomyelinase (SMase)-driven formation of ceramide (Cer) at the membrane interface involves reorganization of the lateral membrane structure of lipids and proteins from the nm to the mum level. In this review, we present recent insights about mechanisms and features of the SMase-mediated formation of Cer-enriched domains in model membranes, which have been elucidated through a combination of microscopic techniques with advanced image processing algorithms. This approach extracts subtle morphological and pattern information beyond the visual perception: since domain patterns are the consequences of subjacent biophysical properties, a reliable quantitative description of the supramolecular structure of the membrane domains yields a direct readout of biophysical properties which are difficult to determine otherwise. Most of the information about SMase action on simple lipid interfaces has arisen from monolayer studies, but the correspondence to lipid bilayer systems will also be discussed. Furthermore, the structural changes induced by sphingomyelinase action are not fully explained just by the presence of ceramide but by out-of equilibrium surface dynamics forcing the lipid domains to adopt transient supramolecular pattern with explicit interaction potentials. This rearrangement responds to a few basic physical properties like lipid mixing/demixing kinetics, electrostatic repulsion and line tension. The possible implications of such transient codes for signal transduction are discussed for SMase controlled action on lipid interfaces.
PLOS ONE | 2012
Hery Urra; Vicente A. Torres; Rina Ortiz; Lorena Lobos; María Inés Díaz; Natalia Díaz; Steffen Härtel; Lisette Leyton; Andrew F.G. Quest
Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration was evaluated by shRNA targeting of endogenous caveolin-1 in MDA-MB-231 human breast cancer cells and ectopic expression in B16-F10 mouse melanoma cells. Depletion of caveolin-1 in MDA-MB-231 cells reduced, while expression in B16-F10 cells promoted migration, polarization and focal adhesion turnover in a sequence of events that involved phosphorylation of tyrosine-14 and Rac-1 activation. In B16-F10 cells, expression of a non-phosphorylatable tyrosine-14 to phenylalanine mutant failed to recapitulate the effects observed with wild-type caveolin-1. Alternatively, treatment of MDA-MB-231 cells with the Src family kinase inhibitor PP2 reduced caveolin-1 phosphorylation on tyrosine-14 and cell migration. Surprisingly, unlike for fibroblasts, caveolin-1 polarization and re-localization to the trailing edge were not observed in migrating metastatic cells. Thus, expression and phosphorylation, but not polarization of caveolin-1 favor the highly mobile phenotype of metastatic cells.
Journal of Biological Chemistry | 2009
Omar A. Ramírez; René L. Vidal; Judith A. Tello; Karina J. Vargas; Stefan Kindler; Steffen Härtel; Andrés Couve
Understanding the mechanisms that control synaptic efficacy through the availability of neurotransmitter receptors depends on uncovering their specific intracellular trafficking routes. γ-Aminobutyric acid type B (GABAB) receptors (GABABRs) are obligatory heteromers present at dendritic excitatory and inhibitory postsynaptic sites. It is unknown whether synthesis and assembly of GABABRs occur in the somatic endoplasmic reticulum (ER) followed by vesicular transport to dendrites or whether somatic synthesis is followed by independent transport of the subunits for assembly and ER export throughout the somatodendritic compartment. To discriminate between these possibilities we studied the association of GABABR subunits in dendrites of hippocampal neurons combining live fluorescence microscopy, biochemistry, quantitative colocalization, and bimolecular fluorescent complementation. We demonstrate that GABABR subunits are segregated and differentially mobile in dendritic intracellular compartments and that a high proportion of non-associated intracellular subunits exist in the brain. Assembled heteromers are preferentially located at the plasma membrane, but blockade of ER exit results in their intracellular accumulation in the cell body and dendrites. We propose that GABABR subunits assemble in the ER and are exported from the ER throughout the neuron prior to insertion at the plasma membrane. Our results are consistent with a bulk flow of segregated subunits through the ER and rule out a post-Golgi vesicular transport of preassembled GABABRs.
Journal of Microscopy | 2010
Omar A. Ramírez; Alejandra García; R. Rojas; Andrés Couve; Steffen Härtel
The quantification of colocalizing signals in multichannel fluorescence microscopy images depends on the reliable segmentation of corresponding regions of interest, on the selection of appropriate colocalization coefficients, and on a robust statistical criterion to discriminate true from random colocalization. Here, we introduce a confined displacement algorithm based on image correlation spectroscopy in combination with Manders colocalization coefficients M1ROI and M2ROI to quantify true and random colocalization of a given florescence pattern. We show that existing algorithms based on block scrambling exaggerate the randomization of fluorescent patterns with resulting inappropriately narrow probability density functions and false significance of true colocalization in terms of p values. We further confine our approach to subcellular compartments and show that true and random colocalization can be analysed for model dendrites and for GABAB receptor subunits GABABR1/2 in cultured hippocampal neurons. Together, we demonstrate that the confined displacement algorithm detects true colocalization of specific fluorescence patterns down to subcellular levels.
Antioxidants & Redox Signaling | 2011
Denise Riquelme; Alvaro Alvarez; Nancy Leal; Tatiana Adasme; Italo Espinoza; Juan Antonio Valdés; Natalia Troncoso; Steffen Härtel; Jorge Hidalgo; Cecilia Hidalgo; M. Angélica Carrasco
Neuronal electrical activity increases intracellular Ca(2+) concentration and generates reactive oxygen species. Here, we show that high frequency field stimulation of primary hippocampal neurons generated Ca(2+) signals with an early and a late component, and promoted hydrogen peroxide generation via a neuronal NADPH oxidase. Hydrogen peroxide generation required both Ca(2+) entry through N-methyl-D-aspartate receptors and Ca(2+) release mediated by ryanodine receptors (RyR). Field stimulation also enhanced nuclear translocation of the NF-κB p65 protein and NF-κB -dependent transcription, and increased c-fos mRNA and type-2 RyR protein content. Preincubation with inhibitory ryanodine or with the antioxidant N-acetyl L-cysteine abolished the increase in hydrogen peroxide generation and the late Ca(2+) signal component induced by electrical stimulation. Primary cortical cells behaved similarly as primary hippocampal cells. Exogenous hydrogen peroxide also activated NF-κB-dependent transcription in hippocampal neurons; inhibitory ryanodine prevented this effect. Selective inhibition of the NADPH oxidase or N-acetyl L-cysteine also prevented the enhanced translocation of p65 in hippocampal cells, while N-acetyl L-cysteine abolished the increase in RyR2 protein content induced by high frequency stimulation. In conclusion, the present results show that electrical stimulation induced reciprocal activation of ryanodine receptor-mediated Ca(2+) signals and hydrogen peroxide generation, which stimulated jointly NF-κB activity.
Biophysical Journal | 2009
Maria Laura Fanani; Luisina De Tullio; Steffen Härtel; Jorge Jara; Bruno Maggio
Sphingomyelinase (SMase)-induced ceramide (Cer)-enriched domains in a lipid monolayer are shown to result from an out-of-equilibrium situation. This is induced by a change of composition caused by the enzymatic production of Cer in a sphingomyelin (SM) monolayer that leads to a fast SM/Cer demixing into a liquid-condensed (LC), Cer-enriched and a liquid-expanded, SM-enriched phases. The morphological evolution and kinetic dependence of Cer-enriched domains is studied under continuous observation by epifluorescence microscopy. Domain shape annealing is observed from branched to rounded shapes after SMase activity quenching by EDTA, with a decay halftime of approximately 10 min. An out-of-equilibrium fast domain growth is not the determinant factor for domain morphology. Domain shape rearrangement in nearly equilibrium conditions result from the counteraction of intradomain dipolar repulsion and line tension, according to McConnells shape transition theory. Phase separation causes a transient compositional overshoot within the LC phase that implies an increased out-of-equilibrium enrichment of Cer into the LC domains. As a consequence, higher intradomain repulsion leads to transient branched structures that relax to rounded shapes by lowering the proportion of Cer in the domain to equilibrium values. The fast action of SMase can be taken as a compositional perturbation that brings about important consequences for the surface organization.