Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alejandro Torres-Hernandez is active.

Publication


Featured researches published by Alejandro Torres-Hernandez.


Nature | 2016

The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression

Lena Seifert; Gregor Werba; Shaun Tiwari; Nancy Ngoc Giao Ly; Sara Alothman; Dalia Alqunaibit; Antonina Avanzi; Rocky Barilla; Donnele Daley; Stephanie H. Greco; Alejandro Torres-Hernandez; Matthew Pergamo; Atsuo Ochi; Constantinos P. Zambirinis; Mridul Pansari; Mauricio Rendon; Daniel Tippens; Mautin Hundeyin; Vishnu R. Mani; Cristina H. Hajdu; Dannielle D. Engle; George Miller

Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle—its cognate receptor—was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.


Cell Death and Disease | 2015

Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury

Michael Deutsch; Christopher S. Graffeo; Rae Rokosh; Mridul Pansari; Atsuo Ochi; Elliot Levie; E Van Heerden; Daniel Tippens; Stephanie H. Greco; Rocky Barilla; Lena Tomkötter; Constantinos P. Zambirinis; N Avanzi; Rishabh Gulati; H L Pachter; Alejandro Torres-Hernandez; Andrew Eisenthal; Donnele Daley; George Miller

Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.


Nature Medicine | 2017

Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance

Donnele Daley; Vishnu R. Mani; Navyatha Mohan; Neha Akkad; Atsuo Ochi; Daniel W. Heindel; Ki Buom Lee; Constantinos P. Zambirinis; Gautam Sd Balasubramania Pandian; Shivraj Savadkar; Alejandro Torres-Hernandez; Shruti Nayak; Ding Wang; Mautin Hundeyin; Brian Diskin; Berk Aykut; Gregor Werba; Rocky Barilla; Robert Rodriguez; Steven Y. Chang; Lawrence Gardner; Lara K. Mahal; Beatrix Ueberheide; George Miller

The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a—the gene encoding dectin 1—or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1–galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.


Cell Reports | 2015

Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways

Lena Seifert; Michael Deutsch; Sara Alothman; Dalia Alqunaibit; Gregor Werba; Mridul Pansari; Matthew Pergamo; Atsuo Ochi; Alejandro Torres-Hernandez; Elliot Levie; Daniel Tippens; Stephanie H. Greco; Shaun Tiwari; Nancy Ngoc Giao Ly; Andrew Eisenthal; Eliza van Heerden; Antonina Avanzi; Rocky Barilla; Constantinos P. Zambirinis; Mauricio Rendon; Donnele Daley; H. Leon Pachter; Cristina H. Hajdu; George Miller

Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.


Gastroenterology | 2016

Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

Lena Seifert; Gregor Werba; Shaun Tiwari; Nancy Ngoc Giao Ly; Susanna Nguy; Sara Alothman; Dalia Alqunaibit; Antonina Avanzi; Donnele Daley; Rocky Barilla; Daniel Tippens; Alejandro Torres-Hernandez; Mautin Hundeyin; Vishnu R. Mani; Cristina H. Hajdu; Ilenia Pellicciotta; Philmo Oh; K.L. Du; George Miller

BACKGROUND & AIMS The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. METHODS We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. RESULTS Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. CONCLUSIONS Radiation treatment causes macrophages murine PDA to acquire an immune-suppressive phenotype and disabled T-cell-mediated anti-tumor responses. MCSF blockade negates this effect, allowing radiation to have increased efficacy in slowing tumor growth.


PLOS ONE | 2015

TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

Stephanie H. Greco; Lena Tomkötter; Anne-Kristin Vahle; Rae Rokosh; Antonina Avanzi; Syed Kashif Mahmood; Michael Deutsch; Sara Alothman; Dalia Alqunaibit; Atsuo Ochi; Constantinos P. Zambirinis; Tasnima Mohaimin; Mauricio Rendon; Elliot Levie; Mridul Pansari; Alejandro Torres-Hernandez; Donnele Daley; Rocky Barilla; H. Leon Pachter; Daniel Tippens; Hassan Z. Malik; Allal Boutajangout; Thomas Wisniewski; George Miller

Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.


Cancer Discovery | 2018

The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression

Smruti Pushalkar; Mautin Hundeyin; Donnele Daley; Constantinos P. Zambirinis; Emma Kurz; Ankita Mishra; Navyatha Mohan; Berk Aykut; Mykhaylo Usyk; Luisana E. Torres; Gregor Werba; Kevin Zhang; Yuqi Guo; Qianhao Li; Neha Akkad; Sarah Lall; Benjamin Wadowski; Johana Gutierrez; Juan Andres Kochen Rossi; Jeremy Herzog; Brian Diskin; Alejandro Torres-Hernandez; Josh Leinwand; Wei Wang; Pardeep S. Taunk; Shivraj Savadkar; Malvin N. Janal; Anjana Saxena; Xin Li; Deirdre Cohen

We found that the cancerous pancreas harbors a markedly more abundant microbiome compared with normal pancreas in both mice and humans, and select bacteria are differentially increased in the tumorous pancreas compared with gut. Ablation of the microbiome protects against preinvasive and invasive pancreatic ductal adenocarcinoma (PDA), whereas transfer of bacteria from PDA-bearing hosts, but not controls, reverses tumor protection. Bacterial ablation was associated with immunogenic reprogramming of the PDA tumor microenvironment, including a reduction in myeloid-derived suppressor cells and an increase in M1 macrophage differentiation, promoting TH1 differentiation of CD4+ T cells and CD8+ T-cell activation. Bacterial ablation also enabled efficacy for checkpoint-targeted immunotherapy by upregulating PD-1 expression. Mechanistically, the PDA microbiome generated a tolerogenic immune program by differentially activating select Toll-like receptors in monocytic cells. These data suggest that endogenous microbiota promote the crippling immune-suppression characteristic of PDA and that the microbiome has potential as a therapeutic target in the modulation of disease progression.Significance: We found that a distinct and abundant microbiome drives suppressive monocytic cellular differentiation in pancreatic cancer via selective Toll-like receptor ligation leading to T-cell anergy. Targeting the microbiome protects against oncogenesis, reverses intratumoral immune tolerance, and enables efficacy for checkpoint-based immunotherapy. These data have implications for understanding immune suppression in pancreatic cancer and its reversal in the clinic. Cancer Discov; 8(4); 403-16. ©2018 AACR.See related commentary by Riquelme et al., p. 386This article is highlighted in the In This Issue feature, p. 371.


Journal of Experimental Medicine | 2017

NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma.

Donnele Daley; Vishnu R. Mani; Navyatha Mohan; Neha Akkad; Gautam Sd Balasubramania Pandian; Shivraj Savadkar; Ki Buom Lee; Alejandro Torres-Hernandez; Berk Aykut; Brian Diskin; Wei Wang; Mohammad S. Farooq; Arif I. Mahmud; Gregor Werba; Eduardo J. Morales; Sarah Lall; Benjamin Wadowski; Amanda G. Rubin; Matthew E. Berman; Rajkishen Narayanan; Mautin Hundeyin; George Miller

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3−/− hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA.


Journal of Leukocyte Biology | 2016

Mincle suppresses Toll-like receptor 4 activation

Stephanie H. Greco; Syed Kashif Mahmood; Anne-Kristin Vahle; Atsuo Ochi; Jennifer Batel; Michael Deutsch; Rocky Barilla; Lena Seifert; H. Leon Pachter; Donnele Daley; Alejandro Torres-Hernandez; Mautin Hundeyin; Vishnu R. Mani; George Miller

Regulation of Toll‐like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C‐type lectin receptor, regulates proinflammatory Toll‐like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll‐like receptor 4–mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide‐mediated inflammation in vivo. Mechanistically, Mincle deletion does not up‐regulate Toll‐like receptor 4 expression or reduce interleukin 10 production after Toll‐like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen‐activated protein kinase‐dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll‐like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle−/− leukocytes to Toll‐like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll‐like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.


Journal of Immunology | 2016

Mincle Signaling Promotes Con A Hepatitis

Stephanie H. Greco; Alejandro Torres-Hernandez; Aleksandr Kalabin; Clint Whiteman; Rae Rokosh; Sushma Ravirala; Atsuo Ochi; Johana Gutierrez; Muhammad Atif Salyana; Vishnu R. Mani; Savitha V. Nagaraj; Michael Deutsch; Lena Seifert; Donnele Daley; Rocky Barilla; Mautin Hundeyin; Yuriy Nikifrov; Karla Tejada; Bruce E. Gelb; Steven C. Katz; George Miller

Con A hepatitis is regarded as a T cell–mediated model of acute liver injury. Mincle is a C-type lectin receptor that is critical in the immune response to mycobacteria and fungi but does not have a well-defined role in preclinical models of non-pathogen–mediated inflammation. Because Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis. Acute liver injury was assessed in the murine Con A hepatitis model using C57BL/6, Mincle−/−, and Dectin-1−/− mice. The role of C/EBPβ and hypoxia-inducible factor-1α (HIF-1α) signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con A hepatitis. Most significantly, Mincle deletion or blockade protected against Con A hepatitis, whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other C-type lectin receptors did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ–related signaling intermediates C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con A hepatitis and inhibition of both C/EBPβ and HIF-1α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation.

Collaboration


Dive into the Alejandro Torres-Hernandez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge