Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie H. Greco is active.

Publication


Featured researches published by Stephanie H. Greco.


Journal of Clinical Investigation | 2012

Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans

Atsuo Ochi; Christopher S. Graffeo; Constantinos P. Zambirinis; Adeel Rehman; Michael Hackman; Nina Fallon; Rocky Barilla; Justin R. Henning; Mohsin Jamal; Raghavendra Rao; Stephanie H. Greco; Michael Deutsch; Marco V. Medina-Zea; Usama Bin Saeed; Melvin Ego-Osuala; Cristina H. Hajdu; George Miller

Pancreatic ductal adenocarcinoma is an aggressive cancer that interacts with stromal cells to produce a highly inflammatory tumor microenvironment that promotes tumor growth and invasiveness. The precise interplay between tumor and stroma remains poorly understood. TLRs mediate interactions between environmental stimuli and innate immunity and trigger proinflammatory signaling cascades. Our finding that TLR7 expression is upregulated in both epithelial and stromal compartments in human and murine pancreatic cancer led us to postulate that carcinogenesis is dependent on TLR7 signaling. In a mouse model of pancreatic cancer, TLR7 ligation vigorously accelerated tumor progression and induced loss of expression of PTEN, p16, and cyclin D1 and upregulation of p21, p27, p53, c-Myc, SHPTP1, TGF-β, PPARγ, and cyclin B1. Furthermore, TLR7 ligation induced STAT3 activation and interfaced with Notch as well as canonical NF-κB and MAP kinase pathways, but downregulated expression of Notch target genes. Moreover, blockade of TLR7 protected against carcinogenesis. Since pancreatic tumorigenesis requires stromal expansion, we proposed that TLR7 ligation modulates pancreatic cancer by driving stromal inflammation. Accordingly, we found that mice lacking TLR7 exclusively within their inflammatory cells were protected from neoplasia. These data suggest that targeting TLR7 holds promise for treatment of human pancreatic cancer.


Nature | 2016

The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression

Lena Seifert; Gregor Werba; Shaun Tiwari; Nancy Ngoc Giao Ly; Sara Alothman; Dalia Alqunaibit; Antonina Avanzi; Rocky Barilla; Donnele Daley; Stephanie H. Greco; Alejandro Torres-Hernandez; Matthew Pergamo; Atsuo Ochi; Constantinos P. Zambirinis; Mridul Pansari; Mauricio Rendon; Daniel Tippens; Mautin Hundeyin; Vishnu R. Mani; Cristina H. Hajdu; Dannielle D. Engle; George Miller

Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle—its cognate receptor—was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.


Gastroenterology | 2014

Interleukin 17–Producing γδT Cells Promote Hepatic Regeneration in Mice

Raghavendra Rao; Christopher S. Graffeo; Rishabh Gulati; Mohsin Jamal; Suchithra Narayan; Constantinos P. Zambirinis; Rocky Barilla; Michael Deutsch; Stephanie H. Greco; Atsuo Ochi; Lena Tomkötter; Reuven Blobstein; Antonina Avanzi; Daniel Tippens; Yisroel Gelbstein; Eliza van Heerden; George Miller

BACKGROUND & AIMS Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). METHODS We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. RESULTS In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. CONCLUSIONS γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration.


Cell Death and Disease | 2015

Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury

Michael Deutsch; Christopher S. Graffeo; Rae Rokosh; Mridul Pansari; Atsuo Ochi; Elliot Levie; E Van Heerden; Daniel Tippens; Stephanie H. Greco; Rocky Barilla; Lena Tomkötter; Constantinos P. Zambirinis; N Avanzi; Rishabh Gulati; H L Pachter; Alejandro Torres-Hernandez; Andrew Eisenthal; Donnele Daley; George Miller

Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.


Journal of Immunology | 2013

Role of Fatty-Acid Synthesis in Dendritic Cell Generation and Function

Adeel Rehman; Keith C. Hemmert; Atsuo Ochi; Mohsin Jamal; Justin R. Henning; Rocky Barilla; Juan P. Quesada; Constantinos P. Zambirinis; Kerry Tang; Melvin Ego-Osuala; Raghavendra Rao; Stephanie H. Greco; Michael Deutsch; Suchithra Narayan; H. Leon Pachter; Christopher S. Graffeo; Devrim Acehan; George Miller

Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4+ and CD8+ T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.


Cell Reports | 2015

Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways

Lena Seifert; Michael Deutsch; Sara Alothman; Dalia Alqunaibit; Gregor Werba; Mridul Pansari; Matthew Pergamo; Atsuo Ochi; Alejandro Torres-Hernandez; Elliot Levie; Daniel Tippens; Stephanie H. Greco; Shaun Tiwari; Nancy Ngoc Giao Ly; Andrew Eisenthal; Eliza van Heerden; Antonina Avanzi; Rocky Barilla; Constantinos P. Zambirinis; Mauricio Rendon; Donnele Daley; H. Leon Pachter; Cristina H. Hajdu; George Miller

Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.


PLOS ONE | 2015

TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

Stephanie H. Greco; Lena Tomkötter; Anne-Kristin Vahle; Rae Rokosh; Antonina Avanzi; Syed Kashif Mahmood; Michael Deutsch; Sara Alothman; Dalia Alqunaibit; Atsuo Ochi; Constantinos P. Zambirinis; Tasnima Mohaimin; Mauricio Rendon; Elliot Levie; Mridul Pansari; Alejandro Torres-Hernandez; Donnele Daley; Rocky Barilla; H. Leon Pachter; Daniel Tippens; Hassan Z. Malik; Allal Boutajangout; Thomas Wisniewski; George Miller

Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.


Journal of Leukocyte Biology | 2016

Mincle suppresses Toll-like receptor 4 activation

Stephanie H. Greco; Syed Kashif Mahmood; Anne-Kristin Vahle; Atsuo Ochi; Jennifer Batel; Michael Deutsch; Rocky Barilla; Lena Seifert; H. Leon Pachter; Donnele Daley; Alejandro Torres-Hernandez; Mautin Hundeyin; Vishnu R. Mani; George Miller

Regulation of Toll‐like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C‐type lectin receptor, regulates proinflammatory Toll‐like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll‐like receptor 4–mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide‐mediated inflammation in vivo. Mechanistically, Mincle deletion does not up‐regulate Toll‐like receptor 4 expression or reduce interleukin 10 production after Toll‐like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen‐activated protein kinase‐dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll‐like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle−/− leukocytes to Toll‐like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll‐like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.


Journal of Immunology | 2016

Mincle Signaling Promotes Con A Hepatitis

Stephanie H. Greco; Alejandro Torres-Hernandez; Aleksandr Kalabin; Clint Whiteman; Rae Rokosh; Sushma Ravirala; Atsuo Ochi; Johana Gutierrez; Muhammad Atif Salyana; Vishnu R. Mani; Savitha V. Nagaraj; Michael Deutsch; Lena Seifert; Donnele Daley; Rocky Barilla; Mautin Hundeyin; Yuriy Nikifrov; Karla Tejada; Bruce E. Gelb; Steven C. Katz; George Miller

Con A hepatitis is regarded as a T cell–mediated model of acute liver injury. Mincle is a C-type lectin receptor that is critical in the immune response to mycobacteria and fungi but does not have a well-defined role in preclinical models of non-pathogen–mediated inflammation. Because Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis. Acute liver injury was assessed in the murine Con A hepatitis model using C57BL/6, Mincle−/−, and Dectin-1−/− mice. The role of C/EBPβ and hypoxia-inducible factor-1α (HIF-1α) signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con A hepatitis. Most significantly, Mincle deletion or blockade protected against Con A hepatitis, whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other C-type lectin receptors did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ–related signaling intermediates C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con A hepatitis and inhibition of both C/EBPβ and HIF-1α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation.


Cell Cycle | 2013

Induction of TRIF- or MYD88-dependent pathways perturbs cell cycle regulation in pancreatic cancer.

Constantinos P. Zambirinis; Atsuo Ochi; Rocky Barilla; Stephanie H. Greco; Michael Deutsch; George Miller

Collaboration


Dive into the Stephanie H. Greco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge