Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rocky Barilla is active.

Publication


Featured researches published by Rocky Barilla.


Journal of Experimental Medicine | 2012

MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells

Atsuo Ochi; Andrew H. Nguyen; Andrea S. Bedrosian; Harry Mushlin; Saman Zarbakhsh; Rocky Barilla; Constantinos P. Zambirinis; Nina Fallon; Adeel Rehman; Yuliya Pylayeva-Gupta; Sana Badar; Cristina H. Hajdu; Alan B. Frey; Dafna Bar-Sagi; George Miller

MyD88 blockade exaggerates the ability of dendritic cells to promote the transition from chronic pancreatitis to pancreatic cancer.


Journal of Clinical Investigation | 2012

Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans

Atsuo Ochi; Christopher S. Graffeo; Constantinos P. Zambirinis; Adeel Rehman; Michael Hackman; Nina Fallon; Rocky Barilla; Justin R. Henning; Mohsin Jamal; Raghavendra Rao; Stephanie H. Greco; Michael Deutsch; Marco V. Medina-Zea; Usama Bin Saeed; Melvin Ego-Osuala; Cristina H. Hajdu; George Miller

Pancreatic ductal adenocarcinoma is an aggressive cancer that interacts with stromal cells to produce a highly inflammatory tumor microenvironment that promotes tumor growth and invasiveness. The precise interplay between tumor and stroma remains poorly understood. TLRs mediate interactions between environmental stimuli and innate immunity and trigger proinflammatory signaling cascades. Our finding that TLR7 expression is upregulated in both epithelial and stromal compartments in human and murine pancreatic cancer led us to postulate that carcinogenesis is dependent on TLR7 signaling. In a mouse model of pancreatic cancer, TLR7 ligation vigorously accelerated tumor progression and induced loss of expression of PTEN, p16, and cyclin D1 and upregulation of p21, p27, p53, c-Myc, SHPTP1, TGF-β, PPARγ, and cyclin B1. Furthermore, TLR7 ligation induced STAT3 activation and interfaced with Notch as well as canonical NF-κB and MAP kinase pathways, but downregulated expression of Notch target genes. Moreover, blockade of TLR7 protected against carcinogenesis. Since pancreatic tumorigenesis requires stromal expansion, we proposed that TLR7 ligation modulates pancreatic cancer by driving stromal inflammation. Accordingly, we found that mice lacking TLR7 exclusively within their inflammatory cells were protected from neoplasia. These data suggest that targeting TLR7 holds promise for treatment of human pancreatic cancer.


Nature | 2016

The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression

Lena Seifert; Gregor Werba; Shaun Tiwari; Nancy Ngoc Giao Ly; Sara Alothman; Dalia Alqunaibit; Antonina Avanzi; Rocky Barilla; Donnele Daley; Stephanie H. Greco; Alejandro Torres-Hernandez; Matthew Pergamo; Atsuo Ochi; Constantinos P. Zambirinis; Mridul Pansari; Mauricio Rendon; Daniel Tippens; Mautin Hundeyin; Vishnu R. Mani; Cristina H. Hajdu; Dannielle D. Engle; George Miller

Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle—its cognate receptor—was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells, which are not protective against PDA progression in mice with intact RIP3 or Mincle signalling, are reprogrammed into indispensable mediators of anti-tumour immunity in the absence of RIP3 or Mincle. Our work describes parallel networks of necroptosis-induced CXCL1 and Mincle signalling that promote macrophage-induced adaptive immune suppression and thereby enable PDA progression.


Gastroenterology | 2012

Dendritic Cell Populations With Different Concentrations of Lipid Regulate Tolerance and Immunity in Mouse and Human Liver

Junaid Ibrahim; Andrew H. Nguyen; Adeel Rehman; Atsuo Ochi; Mohsin Jamal; Christopher S. Graffeo; Justin R. Henning; Constantinos P. Zambirinis; Nina Fallon; Rocky Barilla; Sana Badar; Aaron Mitchell; Raghavendra Rao; Devrim Acehan; Alan B. Frey; George Miller

BACKGROUND & AIMS Immune cells of the liver must be able to recognize and react to pathogens yet remain tolerant to food molecules and other nonpathogens. Dendritic cells (DCs) are believed to contribute to hepatic tolerance. Lipids have been implicated in dysfunction of DCs in cancer. Therefore, we investigated whether high lipid content in liver DCs affects induction of tolerance. METHODS Mouse and human hepatic nonparenchymal cells were isolated by mechanical and enzymatic digestion. DCs were purified by fluorescence-activated cell sorting or with immunomagnetic beads. DC lipid content was assessed by flow cytometry, immune fluorescence, and electron microscopy and by measuring intracellular component lipids. DC activation was determined from surface phenotype and cytokine profile. DC function was assessed in T-cell, natural killer (NK) cell, and NKT cell coculture assays as well as in vivo. RESULTS We observed 2 distinct populations of hepatic DCs in mice and humans based on their lipid content and expression of markers associated with adipogenesis and lipid metabolism. This lipid-based dichotomy in DCs was unique to the liver and specific to DCs compared with other hepatic immune cells. However, rather than mediate tolerance, the liver DC population with high concentrations of lipid was immunogenic in multiple models; they activated T cells, NK cells, and NKT cells. Conversely, liver DCs with low levels of lipid induced regulatory T cells, anergy to cancer, and oral tolerance. The immunogenicity of lipid-rich liver DCs required their secretion of tumor necrosis factor α and was directly related to their high lipid content; blocking DC synthesis of fatty acids or inhibiting adipogenesis (by reducing endoplasmic reticular stress) reduced DC immunogenicity. CONCLUSIONS Human and mouse hepatic DCs are composed of distinct populations that contain different concentrations of lipid, which regulates immunogenic versus tolerogenic responses in the liver.


Gastroenterology | 2014

Interleukin 17–Producing γδT Cells Promote Hepatic Regeneration in Mice

Raghavendra Rao; Christopher S. Graffeo; Rishabh Gulati; Mohsin Jamal; Suchithra Narayan; Constantinos P. Zambirinis; Rocky Barilla; Michael Deutsch; Stephanie H. Greco; Atsuo Ochi; Lena Tomkötter; Reuven Blobstein; Antonina Avanzi; Daniel Tippens; Yisroel Gelbstein; Eliza van Heerden; George Miller

BACKGROUND & AIMS Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). METHODS We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. RESULTS In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. CONCLUSIONS γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration.


Gastroenterology | 2011

Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis

Andrea S. Bedrosian; Andrew H. Nguyen; Michael Hackman; Michael K. Connolly; Ashim Malhotra; Junaid Ibrahim; Napoleon E. Cieza–Rubio; Justin R. Henning; Rocky Barilla; Adeel Rehman; H. Leon Pachter; Marco V. Medina–Zea; Steven M. Cohen; Alan B. Frey; Devrim Acehan; George Miller

BACKGROUND & AIMS The cellular mediators of acute pancreatitis are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. METHODS Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier method. RESULTS Numbers of major histocompatibility complex II(+)CD11c(+) DCs increased 100-fold in pancreata of mice with acute pancreatitis to account for nearly 15% of intrapancreatic leukocytes. Intrapancreatic DCs acquired a distinct immune phenotype in mice with acute pancreatitis; they expressed higher levels of major histocompatibility complex II and CD86 and increased production of interleukin-6, membrane cofactor protein-1, and tumor necrosis factor-α. However, rather than inducing an organ-destructive inflammatory process, DCs were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DCs and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DCs died from acinar cell death within 4 days. Depletion of DCs from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DCs did not require infiltrating neutrophils, activation of nuclear factor-κB, or signaling by mitogen-activated protein kinase or tumor necrosis factor-α. CONCLUSIONS DCs are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress.


Cell Death and Disease | 2015

Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury

Michael Deutsch; Christopher S. Graffeo; Rae Rokosh; Mridul Pansari; Atsuo Ochi; Elliot Levie; E Van Heerden; Daniel Tippens; Stephanie H. Greco; Rocky Barilla; Lena Tomkötter; Constantinos P. Zambirinis; N Avanzi; Rishabh Gulati; H L Pachter; Alejandro Torres-Hernandez; Andrew Eisenthal; Donnele Daley; George Miller

Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.


Journal of Immunology | 2013

Role of Fatty-Acid Synthesis in Dendritic Cell Generation and Function

Adeel Rehman; Keith C. Hemmert; Atsuo Ochi; Mohsin Jamal; Justin R. Henning; Rocky Barilla; Juan P. Quesada; Constantinos P. Zambirinis; Kerry Tang; Melvin Ego-Osuala; Raghavendra Rao; Stephanie H. Greco; Michael Deutsch; Suchithra Narayan; H. Leon Pachter; Christopher S. Graffeo; Devrim Acehan; George Miller

Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4+ and CD8+ T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.


Nature Medicine | 2017

Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance

Donnele Daley; Vishnu R. Mani; Navyatha Mohan; Neha Akkad; Atsuo Ochi; Daniel W. Heindel; Ki Buom Lee; Constantinos P. Zambirinis; Gautam Sd Balasubramania Pandian; Shivraj Savadkar; Alejandro Torres-Hernandez; Shruti Nayak; Ding Wang; Mautin Hundeyin; Brian Diskin; Berk Aykut; Gregor Werba; Rocky Barilla; Robert Rodriguez; Steven Y. Chang; Lawrence Gardner; Lara K. Mahal; Beatrix Ueberheide; George Miller

The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a—the gene encoding dectin 1—or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1–galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.


Cell Reports | 2015

Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways

Lena Seifert; Michael Deutsch; Sara Alothman; Dalia Alqunaibit; Gregor Werba; Mridul Pansari; Matthew Pergamo; Atsuo Ochi; Alejandro Torres-Hernandez; Elliot Levie; Daniel Tippens; Stephanie H. Greco; Shaun Tiwari; Nancy Ngoc Giao Ly; Andrew Eisenthal; Eliza van Heerden; Antonina Avanzi; Rocky Barilla; Constantinos P. Zambirinis; Mauricio Rendon; Donnele Daley; H. Leon Pachter; Cristina H. Hajdu; George Miller

Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.

Collaboration


Dive into the Rocky Barilla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge