Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aleksandra Chojnacka is active.

Publication


Featured researches published by Aleksandra Chojnacka.


Bioresource Technology | 2011

Comparative analysis of hydrogen-producing bacterial biofilms and granular sludge formed in continuous cultures of fermentative bacteria.

Aleksandra Chojnacka; Mieczysław Błaszczyk; Pawel Szczesny; Kinga Nowak; Martyna Sumińska; Karolina Tomczyk-Żak; Urszula Zielenkiewicz; Anna Sikora

A system for biohydrogen production was developed based on long-term continuous cultures grown on sugar beet molasses in packed bed reactors. In two separate cultures, consortia of fermentative bacteria developed as biofilms on granitic stones. In one of the cultures, a granular sludge was also formed. Metagenomic analysis of the microbial communities by 454-pyrosequencing of amplified 16S rDNA fragments revealed that the overall biodiversity of the hydrogen-producing cultures was quite small. The stone biofilm from the culture without granular sludge was dominated by Clostridiaceae and heterolactic fermentation bacteria, mainly Leuconostocaeae. Representatives of the Leuconostocaeae and Enterobacteriaceae were dominant in both the granules and the stone biofilm formed in the granular sludge culture. The culture containing granular sludge produced hydrogen significantly more effectively than that containing only the stone biofilm: 5.43 vs. 2.8 mol H(2)/mol sucrose from molasses, respectively. The speculations that lactic acid bacteria may favor hydrogen production are discussed.


PLOS ONE | 2012

Novel AlkB Dioxygenases—Alternative Models for In Silico and In Vivo Studies

Damian Mielecki; Dorota Łucja Zugaj; Anna Muszewska; Jan Piwowarski; Aleksandra Chojnacka; Marcin Mielecki; Jadwiga Nieminuszczy; Marcin Grynberg; Elżbieta Grzesiuk

Background ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes. Methodology and Findings Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB − mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment. Conclusions Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis.


PLOS ONE | 2015

Noteworthy Facts about a Methane-Producing Microbial Community Processing Acidic Effluent from Sugar Beet Molasses Fermentation.

Aleksandra Chojnacka; Pawel Szczesny; Mieczysław Błaszczyk; Urszula Zielenkiewicz; Anna Detman; Agnieszka Salamon; Anna Sikora

Anaerobic digestion is a complex process involving hydrolysis, acidogenesis, acetogenesis and methanogenesis. The separation of the hydrogen-yielding (dark fermentation) and methane-yielding steps under controlled conditions permits the production of hydrogen and methane from biomass. The characterization of microbial communities developed in bioreactors is crucial for the understanding and optimization of fermentation processes. Previously we developed an effective system for hydrogen production based on long-term continuous microbial cultures grown on sugar beet molasses. Here, the acidic effluent from molasses fermentation was used as the substrate for methanogenesis in an upflow anaerobic sludge blanket bioreactor. This study focused on the molecular analysis of the methane-yielding community processing the non-gaseous products of molasses fermentation. The substrate for methanogenesis produces conditions that favor the hydrogenotrophic pathway of methane synthesis. Methane production results from syntrophic metabolism whose key process is hydrogen transfer between bacteria and methanogenic Archaea. High-throughput 454 pyrosequencing of total DNA isolated from the methanogenic microbial community and bioinformatic sequence analysis revealed that the domain Bacteria was dominated by Firmicutes (mainly Clostridia), Bacteroidetes, δ- and γ-Proteobacteria, Cloacimonetes and Spirochaetes. In the domain Archaea, the order Methanomicrobiales was predominant, with Methanoculleus as the most abundant genus. The second and third most abundant members of the Archaeal community were representatives of the Methanomassiliicoccales and the Methanosarcinales. Analysis of the methanogenic sludge by scanning electron microscopy with Energy Dispersive X-ray Spectroscopy and X-ray diffraction showed that it was composed of small highly heterogeneous mineral-rich granules. Mineral components of methanogenic granules probably modulate syntrophic metabolism and methanogenic pathways. A rough functional analysis from shotgun data of the metagenome demonstrated that our knowledge of methanogenesis is poor and/or the enzymes responsible for methane production are highly effective, since despite reasonably good sequencing coverage, the details of the functional potential of the microbial community appeared to be incomplete.


Environmental and Molecular Mutagenesis | 2009

Mutagenic potency of MMS-induced 1meA/3meC lesions in E. coli.

Jadwiga Nieminuszczy; Damian Mielecki; Anna Sikora; Michał Wrzesiński; Aleksandra Chojnacka; Joanna Krwawicz; Celina Janion; Elżbieta Grzesiuk

The mutagenic activity of MMS in E. coli depends on the susceptibility of DNA bases to methylation and their repair by cellular defense systems. Among the lesions in methylated DNA is 1meA/3meC, which is recently recognized as being mutagenic. In this report, special attention is focused on the mutagenic properties of 1meA/3meC which, by the activity of AlkB‐dioxygenase, are quickly and efficiently converted to natural A/C bases in the DNA of E. coli alkB+ strains, preventing 1meA/3meC‐induced mutations. We have found that in the absence of AlkB‐mediated repair, MMS treatment results in an increased frequency of four types of base substitutions: GC→CG, GC→TA, AT→CG, and AT→TA, whereas overproduction of PolV in CC101–106 alkB−/pRW134 strains leads to a markedly elevated level of GC→TA, GC→CG, and AT→TA transversions. It has been observed that in the case of AB1157 alkB− strains, the MMS‐induced and 1meA/3meC‐dependent argE3→Arg+ reversion occurs efficiently, whereas lacZ−→ Lac+ reversion in a set of CC101–106 alkB− strains occurs with much lower frequency. We considered several reasons for this discrepancy, namely, the possible variance in the level of the PolV activity, the effect of the PolIV contents that is higher in CC101–106 than in AB1157 strains and the different genetic cell backgrounds in CC101–106 alkB− and AB1157 alkB− strains, respectively. We postulate that the difference in the number of targets undergoing mutation and different reactivity of MMS with ssDNA and dsDNA are responsible for the high (argE3→Arg+) and low (lacZ− → Lac+) frequency of MMS—induced mutations. Environ. Mol. Mutagen. 2009.


Mutation Research | 2010

Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein

Michał Wrzesiński; Jadwiga Nieminuszczy; Anna Sikora; Damian Mielecki; Aleksandra Chojnacka; Marek Kozłowski; Joanna Krwawicz; Elżbieta Grzesiuk

In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart.


Archive | 2017

Anaerobic Digestion: I. A Common Process Ensuring Energy Flow and the Circulation of Matter in Ecosystems. II. A Tool for the Production of Gaseous Biofuels

Anna Sikora; Anna Detman; Aleksandra Chojnacka; MieczysławK. Błaszczyk

Anaerobic digestion, a process that ultimately generates methane and carbon dioxide, is common in natural anoxic ecosystems where concentrations of electron acceptors such as nitrate, the oxidized forms of metals and sulphate are low. It also occurs in landfill sites and wastewater treatment plants. The general scheme of anaerobic digestion is well known and comprises four major steps: (i) hydrolysis of complex organic polymers to monomers; (ii) acidogenesis that results in the formation of hydrogen and carbon dioxide as well as non-gaseous fermentation products that are further oxidized to hydrogen, carbon dioxide and acetate in (iii) acetogenesis based on syntrophic metabolism, and (iv) methanogenesis. Approaches to the analysis of methane-yielding microbial communities and data acquisition are described. There is currently great interest in the development of new technologies for the production of biogas (primarily methane) from anaerobic digestion as a source of renewable energy. This includes the modernization of landfill sites and wastewater treatment plants and the construction of biogas plants. Moreover, research effort is being devoted to the idea of separating hydrolysis and acidogenesis from acetogenesis and methanogenesis under controlled conditions in order to favour biohydrogen and biomethane production, respectively. These two stages occur under different conditions and are carried out in separate bioreactors.


Biotechnology for Biofuels | 2018

Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle

Anna Detman; Damian Mielecki; Łukasz Pleśniak; Michał Bucha; Marek Janiga; Irena Matyasik; Aleksandra Chojnacka; Mariusz-Orion Jędrysek; Mieczysław Błaszczyk; Anna Sikora

BackgroundAnaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors.ResultsMethane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes, Firmicutes, Proteobacteria, Synergistetes, Actinobacteria, Spirochaetes, Tenericutes, Caldithrix, Verrucomicrobia, Thermotogae, Chloroflexi, Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate-oxidizing metabolic machinery homologous to those of Acetobacterium woodii and Desulfovibrio vulgaris. Furthermore, genes for enzymes of the reductive acetyl-CoA pathway were present in the microbial communities.ConclusionsThe results indicate that lactate is oxidized mainly to acetate during the acetogenic step of AD and this comprises the acetotrophic pathway of methanogenesis. The genes for lactate utilization under anaerobic conditions are widespread in the domain Bacteria. Lactate oxidation to the substrates for methanogens is the most energetically attractive process in comparison to butyrate, propionate, or ethanol oxidation.


Mutagenesis | 2010

Lethal and mutagenic properties of MMS-generated DNA lesions in Escherichia coli cells deficient in BER and AlkB-directed DNA repair

Anna Sikora; Damian Mielecki; Aleksandra Chojnacka; Jadwiga Nieminuszczy; Michał Wrzesiński; Elżbieta Grzesiuk


Polish Journal of Environmental Studies | 2017

Biohydrogen and Biomethane (Biogas) Production in the Consecutive Stages of Anaerobic Digestion of Molasses

Anna Detman; Aleksandra Chojnacka; Mieczysław Błaszczyk; Wiktor Kaźmierczak; Jan Piotrowski; Anna Sikora


International Journal of Coal Geology | 2018

Lignite biodegradation under conditions of acidic molasses fermentation

Anna Detman; Michał Bucha; Bernd R.T. Simoneit; Damian Mielecki; Cezary Piwowarczyk; Aleksandra Chojnacka; Mieczysław Błaszczyk; Mariusz Orion Jędrysek; Leszek Marynowski; Anna Sikora

Collaboration


Dive into the Aleksandra Chojnacka's collaboration.

Top Co-Authors

Avatar

Anna Sikora

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Damian Mielecki

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Detman

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mieczysław Błaszczyk

Warsaw University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Muszewska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Piwowarski

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge