Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandra Boletta is active.

Publication


Featured researches published by Alessandra Boletta.


Cell | 2002

PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2

Anil K. Bhunia; Klaus Piontek; Alessandra Boletta; Lijuan Liu; Feng Qian; Pei Ning Xu; F. Joseph Germino; Gregory G. Germino

Autosomal dominant polycystic kidney disease is characterized by cyst formation in the kidney and other organs and results from mutations of PKD1 or PKD2. Previous studies suggest that their gene products have an important role in growth regulation. We now show that expression of polycystin-1 activates the JAK-STAT pathway, thereby upregulating p21(waf1) and inducing cell cycle arrest in G0/G1. This process requires polycystin-2, a channel protein, as an essential cofactor. Mutations that disrupt polycystin-1/2 binding prevent activation of the pathway. Mouse embryos lacking Pkd1 have defective STAT1 phosphorylation and p21(waf1) induction. These results suggest that one function of the polycystin-1/2 complex is to regulate the JAK/STAT pathway and explain how mutations of either gene can result in dysregulated growth.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations

Feng Qian; Alessandra Boletta; Anil K. Bhunia; Hangxue Xu; L F Liu; Ali K. Ahrabi; Terry Watnick; Fang Zhou; Gregory G. Germino

Polycystin-1 plays an essential role in renal tubular morphogenesis, and disruption of its function causes cystogenesis in human autosomal-dominant polycystic kidney disease (ADPKD). We demonstrated that polycystin-1 undergoes cleavage at G protein coupled receptor proteolytic site in a process that requires the receptor for egg jelly domain. Most of the N-terminal fragment remains tethered at the cell surface, although a small amount is secreted. PKD1-associated mutations in the receptor for egg jelly domain disrupt cleavage, abolish the ability of polycystin-1 to activate signal transducer and activator of transcription-1, and induce tubulogenesis in vitro. We conclude that the cleavage of polycystin-1 is likely essential for its biologic activity.


Molecular Cell | 2000

Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells.

Alessandra Boletta; Feng Qian; Luiz F. Onuchic; Anil K. Bhunia; Bunyong Phakdeekitcharoen; Kazushige Hanaoka; William B. Guggino; Lucia Monaco; Gregory G. Germino

The major form of autosomal dominant polycystic kidney disease (ADPKD) results from mutation of a gene (PKD1) of unknown function that is essential for the later stages of renal tubular differentiation. In this report, we describe a novel cell culture system for studying how PKD1 regulates this process. We show that expression of human PKD1 in MDCK cells slows their growth and protects them from programmed cell death. MDCK cells expressing PKD1 also spontaneously form branching tubules while control cells form simple cysts. Increased cell proliferation and apoptosis have been implicated in the pathogenesis of cystic diseases. Our study suggests that PKD1 may function to regulate both pathways, allowing cells to enter a differentiation pathway that results in tubule formation.


Molecular and Cellular Biology | 2009

Polycystin-1 Regulates Extracellular Signal-Regulated Kinase-Dependent Phosphorylation of Tuberin To Control Cell Size through mTOR and Its Downstream Effectors S6K and 4EBP1

Gianfranco Distefano; Manila Boca; Isaline Rowe; Claas Wodarczyk; Li Ma; Klaus Piontek; Gregory G. Germino; Pier Paolo Pandolfi; Alessandra Boletta

ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease characterized by bilateral renal cyst formation. Both hyperproliferation and hypertrophy have been previously observed in ADPKD kidneys. Polycystin-1 (PC-1), a large orphan receptor encoded by the PKD1 gene and mutated in 85% of all cases, is able to inhibit proliferation and apoptosis. Here we show that overexpression of PC-1 in renal epithelial cells inhibits cell growth (size) in a cell cycle-independent manner due to the downregulation of mTOR, S6K1, and 4EBP1. Upregulation of the same pathway leads to increased cell size, as found in mouse embryonic fibroblasts derived from Pkd1−/− mice. We show that PC-1 controls the mTOR pathway in a Tsc2-dependent manner, by inhibiting the extracellular signal-regulated kinase (ERK)-mediated phosphorylation of tuberin in Ser664. We provide a detailed molecular mechanism by which PC-1 can inhibit the mTOR pathway and regulate cell size.


Nature Medicine | 2013

Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy.

Isaline Rowe; Marco Chiaravalli; Valeria Mannella; Valeria Ulisse; Giacomo Quilici; Monika Pema; Xuewen W Song; Hangxue Xu; Silvia Mari; Feng Qian; York Pei; Giovanna Musco; Alessandra Boletta

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Recent identification of signaling cascades deregulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still lacking. Using a metabolomic approach, we identify a pathogenic pathway in this disease that can be safely targeted for therapy. We show that mutation of PKD1 results in enhanced glycolysis in cells in a mouse model of PKD and in kidneys from humans with ADPKD. Glucose deprivation resulted in lower proliferation and higher apoptotic rates in PKD1-mutant cells than in nondeprived cells. Notably, two distinct PKD mouse models treated with 2-deoxyglucose (2DG), to inhibit glycolysis, had lower kidney weight, volume, cystic index and proliferation rates as compared to nontreated mice. These metabolic alterations depend on the extracellular signal-related kinase (ERK) pathway acting in a dual manner by inhibiting the liver kinase B1 (LKB1)–AMP-activated protein kinase (AMPK) axis on the one hand while activating the mTOR complex 1 (mTORC1)-glycolytic cascade on the other. Enhanced metabolic rates further inhibit AMPK. Forced activation of AMPK acts in a negative feedback loop, restoring normal ERK activity. Taken together, these data indicate that defective glucose metabolism is intimately involved in the pathobiology of ADPKD. Our findings provide a strong rationale for a new therapeutic strategy using existing drugs, either individually or in combination.


Developmental Cell | 2014

PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function

Irene Franco; Federico Gulluni; Carlo Cosimo Campa; Carlotta Costa; Jean Piero Margaria; Elisa Ciraolo; Miriam Martini; Daniel Monteyne; Elisa De Luca; Giulia Germena; York Posor; Tania Maffucci; Stefano Marengo; Volker Haucke; Marco Falasca; David Perez-Morga; Alessandra Boletta; Giorgio R. Merlo; Emilio Hirsch

Summary Multiple phosphatidylinositol (PtdIns) 3-kinases (PI3Ks) can produce PtdIns3P to control endocytic trafficking, but whether enzyme specialization occurs in defined subcellular locations is unclear. Here, we report that PI3K-C2α is enriched in the pericentriolar recycling endocytic compartment (PRE) at the base of the primary cilium, where it regulates production of a specific pool of PtdIns3P. Loss of PI3K-C2α-derived PtdIns3P leads to mislocalization of PRE markers such as TfR and Rab11, reduces Rab11 activation, and blocks accumulation of Rab8 at the primary cilium. These changes in turn cause defects in primary cilium elongation, Smo ciliary translocation, and Sonic Hedgehog (Shh) signaling and ultimately impair embryonic development. Selective reconstitution of PtdIns3P levels in cells lacking PI3K-C2α rescues Rab11 activation, primary cilium length, and Shh pathway induction. Thus, PI3K-C2α regulates the formation of a PtdIns3P pool at the PRE required for Rab11 and Shh pathway activation.


Journal of The American Society of Nephrology | 2006

Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

Manila Boca; Gianfranco Distefano; Feng Qian; Anil K. Bhunia; Gregory G. Germino; Alessandra Boletta

Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K beta activity in PC-1-expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease.


Clinical Journal of The American Society of Nephrology | 2010

Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases

Vincente E. Torres; Alessandra Boletta; Arlene B. Chapman; Vincent H. Gattone; York Pei; Qi Qian; Darren P. Wallace; Thomas Weimbs; Rudolf P. Wüthrich

Mammalian target of rapamycin (mTOR) is the core component of two complexes, mTORC1 and mTORC2. mTORC1 is inhibited by rapamycin and analogues. mTORC2 is impeded only in some cell types by prolonged exposure to these compounds. mTOR activation is linked to tubular cell proliferation in animal models and human autosomal dominant polycystic kidney disease (ADPKD). mTOR inhibitors impede cell proliferation and cyst growth in polycystic kidney disease (PKD) models. After renal transplantation, two small retrospective studies suggested that mTOR was more effective than calcineurin inhibitor-based immunosuppression in limiting kidney and/or liver enlargement. By inhibiting vascular remodeling, angiogenesis, and fibrogenesis, mTOR inhibitors may attenuate nephroangiosclerosis, cyst growth, and interstitial fibrosis. Thus, they may benefit ADPKD at multiple levels. However, mTOR inhibition is not without risks and side effects, mostly dose-dependent. Under certain conditions, mTOR inhibition interferes with adaptive increases in renal proliferation necessary for recovery from injury. They restrict Akt activation, nitric oxide synthesis, and endothelial cell survival (downstream from mTORC2) and potentially increase the risk for glomerular and peritubular capillary loss, vasospasm, and hypertension. They impair podocyte integrity pathways and may predispose to glomerular injury. Administration of mTOR inhibitors is discontinued because of side effects in up to 40% of transplant recipients. Currently, treatment with mTOR inhibitors should not be recommended to treat ADPKD. Results of ongoing studies must be awaited and patients informed accordingly. If effective, lower dosages than those used to prevent rejection would minimize side effects. Combination therapy with other effective drugs could improve tolerability and results.


PLOS ONE | 2009

A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus

Claas Wodarczyk; Isaline Rowe; Marco Chiaravalli; Monika Pema; Feng Qian; Alessandra Boletta

Polycystin-1 (PC-1), the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD), is a very large (∼520 kDa) plasma membrane receptor localized in several subcellular compartments including cell-cell/matrix junctions as well as cilia. While heterologous over-expression systems have allowed identification of several of the potential biological roles of this receptor, its precise function remains largely elusive. Studying PC-1 in vivo has been a challenging task due to its complexity and low expression levels. To overcome these limitations and facilitate the study of endogenous PC-1, we have inserted HA- or Myc-tag sequences into the Pkd1 locus by homologous recombination. Here, we show that our approach was successful in generating a fully functional and easily detectable endogenous PC-1. Characterization of PC-1 distribution in vivo showed that it is expressed ubiquitously and is developmentally-regulated in most tissues. Furthermore, our novel tool allowed us to investigate the role of PC-1 in brain, where the protein is abundantly expressed. Subcellular localization of PC-1 revealed strong and specific staining in ciliated ependymal and choroid plexus cells. Consistent with this distribution, we observed hydrocephalus formation both in the ubiquitous knock-out embryos and in newborn mice with conditional inactivation of the Pkd1 gene in the brain. Both choroid plexus and ependymal cilia were morphologically normal in these mice, suggesting a role for PC-1 in ciliary function or signalling in this compartment, rather than in ciliogenesis. We propose that the role of PC-1 in the brain cilia might be to prevent hydrocephalus, a previously unrecognized role for this receptor and one that might have important implications for other genetic or sporadic diseases.


Nature Communications | 2014

Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism

Hyunho Kim; Hangxue Xu; Qin Yao; Weizhe Li; Qiong Huang; Patricia Outeda; Valeriu Cebotaru; Marco Chiaravalli; Alessandra Boletta; Klaus Piontek; Gregory G. Germino; Edward J. Weinman; Terry Watnick; Feng Qian

Primary cilia contain specific receptors and channel proteins that sense the extracellular milieu. Defective ciliary function causes ciliopathies such as autosomal dominant polycystic kidney disease (ADPKD). However, little is known about how large ciliary transmembrane proteins traffic to the cilia. Polycystin-1 (PC1) and -2 (PC2), the two ADPKD gene products, are large transmembrane proteins that co-localize to cilia where they act to control proper tubular diameter. Here we describe that PC1 and PC2 must interact and form a complex to reach the trans-Golgi network (TGN) for subsequent ciliary targeting. PC1 must also be proteolytically cleaved at a GPS site for this to occur. Using yeast two-hybrid screening coupled with a candidate approach, we identify a Rabep1/GGA1/Arl3-dependent ciliary targeting mechanism, whereby Rabep1 couples the polycystin complex to a GGA1/Arl3-based ciliary trafficking module at the TGN. This study provides novel insights into the ciliary trafficking mechanism of membrane proteins.

Collaboration


Dive into the Alessandra Boletta's collaboration.

Top Co-Authors

Avatar

Feng Qian

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Gregory G. Germino

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marco Chiaravalli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Isaline Rowe

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Monika Pema

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Klaus Piontek

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Gianfranco Distefano

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maddalena Castelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Manila Boca

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Anil K. Bhunia

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge