Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Chiaravalli is active.

Publication


Featured researches published by Marco Chiaravalli.


Nature Medicine | 2013

Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy.

Isaline Rowe; Marco Chiaravalli; Valeria Mannella; Valeria Ulisse; Giacomo Quilici; Monika Pema; Xuewen W Song; Hangxue Xu; Silvia Mari; Feng Qian; York Pei; Giovanna Musco; Alessandra Boletta

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Recent identification of signaling cascades deregulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still lacking. Using a metabolomic approach, we identify a pathogenic pathway in this disease that can be safely targeted for therapy. We show that mutation of PKD1 results in enhanced glycolysis in cells in a mouse model of PKD and in kidneys from humans with ADPKD. Glucose deprivation resulted in lower proliferation and higher apoptotic rates in PKD1-mutant cells than in nondeprived cells. Notably, two distinct PKD mouse models treated with 2-deoxyglucose (2DG), to inhibit glycolysis, had lower kidney weight, volume, cystic index and proliferation rates as compared to nontreated mice. These metabolic alterations depend on the extracellular signal-related kinase (ERK) pathway acting in a dual manner by inhibiting the liver kinase B1 (LKB1)–AMP-activated protein kinase (AMPK) axis on the one hand while activating the mTOR complex 1 (mTORC1)-glycolytic cascade on the other. Enhanced metabolic rates further inhibit AMPK. Forced activation of AMPK acts in a negative feedback loop, restoring normal ERK activity. Taken together, these data indicate that defective glucose metabolism is intimately involved in the pathobiology of ADPKD. Our findings provide a strong rationale for a new therapeutic strategy using existing drugs, either individually or in combination.


PLOS ONE | 2009

A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus

Claas Wodarczyk; Isaline Rowe; Marco Chiaravalli; Monika Pema; Feng Qian; Alessandra Boletta

Polycystin-1 (PC-1), the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD), is a very large (∼520 kDa) plasma membrane receptor localized in several subcellular compartments including cell-cell/matrix junctions as well as cilia. While heterologous over-expression systems have allowed identification of several of the potential biological roles of this receptor, its precise function remains largely elusive. Studying PC-1 in vivo has been a challenging task due to its complexity and low expression levels. To overcome these limitations and facilitate the study of endogenous PC-1, we have inserted HA- or Myc-tag sequences into the Pkd1 locus by homologous recombination. Here, we show that our approach was successful in generating a fully functional and easily detectable endogenous PC-1. Characterization of PC-1 distribution in vivo showed that it is expressed ubiquitously and is developmentally-regulated in most tissues. Furthermore, our novel tool allowed us to investigate the role of PC-1 in brain, where the protein is abundantly expressed. Subcellular localization of PC-1 revealed strong and specific staining in ciliated ependymal and choroid plexus cells. Consistent with this distribution, we observed hydrocephalus formation both in the ubiquitous knock-out embryos and in newborn mice with conditional inactivation of the Pkd1 gene in the brain. Both choroid plexus and ependymal cilia were morphologically normal in these mice, suggesting a role for PC-1 in ciliary function or signalling in this compartment, rather than in ciliogenesis. We propose that the role of PC-1 in the brain cilia might be to prevent hydrocephalus, a previously unrecognized role for this receptor and one that might have important implications for other genetic or sporadic diseases.


Nature Communications | 2014

Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism

Hyunho Kim; Hangxue Xu; Qin Yao; Weizhe Li; Qiong Huang; Patricia Outeda; Valeriu Cebotaru; Marco Chiaravalli; Alessandra Boletta; Klaus Piontek; Gregory G. Germino; Edward J. Weinman; Terry Watnick; Feng Qian

Primary cilia contain specific receptors and channel proteins that sense the extracellular milieu. Defective ciliary function causes ciliopathies such as autosomal dominant polycystic kidney disease (ADPKD). However, little is known about how large ciliary transmembrane proteins traffic to the cilia. Polycystin-1 (PC1) and -2 (PC2), the two ADPKD gene products, are large transmembrane proteins that co-localize to cilia where they act to control proper tubular diameter. Here we describe that PC1 and PC2 must interact and form a complex to reach the trans-Golgi network (TGN) for subsequent ciliary targeting. PC1 must also be proteolytically cleaved at a GPS site for this to occur. Using yeast two-hybrid screening coupled with a candidate approach, we identify a Rabep1/GGA1/Arl3-dependent ciliary targeting mechanism, whereby Rabep1 couples the polycystin complex to a GGA1/Arl3-based ciliary trafficking module at the TGN. This study provides novel insights into the ciliary trafficking mechanism of membrane proteins.


Nature Communications | 2013

Polycystin-1 Binds Par3/aPKC and Controls Convergent Extension During Renal Tubular Morphogenesis

Maddalena Castelli; Manila Boca; Marco Chiaravalli; Harini Ramalingam; Isaline Rowe; Gianfranco Distefano; Thomas J. Carroll; Alessandra Boletta

Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.


Nature Communications | 2016

mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex

Monika Pema; Luca Drusian; Marco Chiaravalli; Maddalena Castelli; Qin Yao; Sara Ricciardi; Stefan Somlo; Feng Qian; Stefano Biffo; Alessandra Boletta

Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney-specific inactivation of either Pkd1 or Tsc1 using an identical Cre (KspCre) results in aggressive or very mild PKD, respectively. Unexpectedly, we find that mTORC1 negatively regulates the biogenesis of polycystin-1 (PC-1) and trafficking of the PC-1/2 complex to cilia. Genetic interaction studies reveal an important role for PC-1 downregulation by mTORC1 in the cystogenesis of Tsc1 mutants. Our data potentially explain the severe renal manifestations of the TSC/PKD contiguous gene syndrome and open new perspectives for the use of mTOR inhibitors in autosomal dominant PKD caused by hypomorphic or missense PKD1 mutations.


Journal of The American Society of Nephrology | 2016

2-Deoxy-d-Glucose Ameliorates PKD Progression

Marco Chiaravalli; Isaline Rowe; Valeria Mannella; Giacomo Quilici; Tamara Canu; Veronica Bianchi; Antonia Gurgone; Sofia Antunes; Patrizia D’Adamo; Antonio Esposito; Giovanna Musco; Alessandra Boletta

Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of ESRD for which there exists no approved therapy in the United States. Defective glucose metabolism has been identified as a feature of ADPKD, and inhibition of glycolysis using glucose analogs ameliorates aggressive PKD in preclinical models. Here, we investigated the effects of chronic treatment with low doses of the glucose analog 2-deoxy-d-glucose (2DG) on ADPKD progression in orthologous and slowly progressive murine models created by inducible inactivation of the Pkd1 gene postnatally. As previously reported, early inactivation (postnatal days 11 and 12) of Pkd1 resulted in PKD developing within weeks, whereas late inactivation (postnatal days 25-28) resulted in PKD developing in months. Irrespective of the timing of Pkd1 gene inactivation, cystic kidneys showed enhanced uptake of (13)C-glucose and conversion to (13)C-lactate. Administration of 2DG restored normal renal levels of the phosphorylated forms of AMP-activated protein kinase and its target acetyl-CoA carboxylase. Furthermore, 2DG greatly retarded disease progression in both model systems, reducing the increase in total kidney volume and cystic index and markedly reducing CD45-positive cell infiltration. Notably, chronic administration of low doses (100 mg/kg 5 days per week) of 2DG did not result in any obvious sign of toxicity as assessed by analysis of brain and heart histology as well as behavioral tests. Our data provide proof of principle support for the use of 2DG as a therapeutic strategy in ADPKD.


Journal of Biological Chemistry | 2014

Polycystin-1 negatively regulates Polycystin-2 expression via the aggresome/autophagosome pathway.

Valeriu Cebotaru; Liudmila Cebotaru; Hyunho Kim; Marco Chiaravalli; Alessandra Boletta; Feng Qian; William B. Guggino

Background: PC1 and PC2 function as a complex, but their interrelations are not completely understood. Results: Expression of PC1 accelerates degradation of PC2. Conclusion: PC1 negatively regulates PC2 expression, presumptively by enhancing degradation via the aggresome/autophagosome pathway. Significance: Understanding how PC1 regulates PC2 within a critical range may help elucidate the pathogenesis of cyst formation. Mutations of the PKD1 and PKD2 genes, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, lead to autosomal dominant polycystic kidney disease. Interestingly, up-regulation or down-regulation of PKD1 or PKD2 leads to polycystic kidney disease in animal models, but their interrelations are not completely understood. We show here that full-length PC1 that interacts with PC2 via a C-terminal coiled-coil domain regulates PC2 expression in vivo and in vitro by down-regulating PC2 expression in a dose-dependent manner. Expression of the pathogenic mutant R4227X, which lacks the C-terminal coiled-coil domain, failed to down-regulate PC2 expression, suggesting that PC1-PC2 interaction is necessary for PC2 regulation. The proteasome and autophagy are two pathways that control protein degradation. Proteins that are not degraded by proteasomes precipitate in the cytoplasm and are transported via histone deacetylase 6 (HDAC6) toward the aggresomes. We found that HDAC6 binds to PC2 and that expression of full-length PC1 accelerates the transport of the HDAC6-PC2 complex toward aggresomes, whereas expression of the R4227X mutant fails to do so. Aggresomes are engulfed by autophagosomes, which then fuse with the lysosome for degradation; this process is also known as autophagy. We have now shown that PC1 overexpression leads to increased degradation of PC2 via autophagy. Interestingly, PC1 does not activate autophagy generally. Thus, we have now uncovered a new pathway suggesting that when PC1 is expressed, PC2 that is not bound to PC1 is directed to aggresomes and subsequently degraded via autophagy, a control mechanism that may play a role in autosomal dominant polycystic kidney disease pathogenesis.


Journal of The American Society of Nephrology | 2016

Phosphoinositide 3-Kinase-C2α Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation

Irene Franco; Jean Piero Margaria; Maria Chiara De Santis; Andrea Ranghino; Daniel Monteyne; Marco Chiaravalli; Monika Pema; Carlo Cosimo Campa; Edoardo Ratto; Federico Gulluni; David Perez-Morga; Stefan Somlo; Giorgio R. Merlo; Alessandra Boletta; Emilio Hirsch

Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2α (PI3K-C2α) in renal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2α resides at the recycling endosome compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2α controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium. Consistently, partial reduction of PI3K-C2α was sufficient to impair elongation of the cilium and the ciliary transport of polycystin-2, as well as to alter proliferation signals linked to polycystin activity. In agreement, heterozygous deletion of PI3K-C2α in mice induced cilium elongation defects in kidney tubules and predisposed animals to cyst development, either in genetic models of polycystin-1/2 reduction or in response to ischemia/reperfusion-induced renal damage. These results indicate that PI3K-C2α is required for the transport of ciliary components such as polycystin-2, and partial loss of this enzyme is sufficient to exacerbate the pathogenesis of cystic kidney disease.


Biochemical and Biophysical Research Communications | 2014

Impaired glomerulogenesis and endothelial cell migration in Pkd1-deficient renal organ cultures

Isaline Rowe; Marco Chiaravalli; Klaus Piontek; Gregory G. Germino; Alessandra Boletta

Highlights • The PKD1 gene, mutated in ADPKD is developmentally regulated in the kidney.• Renal organ cultures of two distinct Pkd1 mutants display normal UB branching.• Glomeruli fail to properly develop in Pkd1 mutant renal organ cultures.• Defective endothelial cell migration likely accounts for glomerulogenesis defects.• PI3kinase inhibitors phenocopy the Pkd1 phenotype, VEGF minimally improves it.


Scientific Reports | 2017

The centrosomal OFD1 protein interacts with the translation machinery and regulates the synthesis of specific targets

Daniela Iaconis; Maria Chiara Monti; Mario Renda; Arianne van Koppen; Roberta Tammaro; Marco Chiaravalli; Flora Cozzolino; Paola Pignata; Claudia Crina; Piero Pucci; Alessandra Boletta; Vincenzo Belcastro; Rachel H. Giles; Enrico Maria Surace; Simone Gallo; Mario Pende; Brunella Franco

Protein synthesis is traditionally associated with specific cytoplasmic compartments. We now show that OFD1, a centrosomal/basal body protein, interacts with components of the Preinitiation complex of translation (PIC) and of the eukaryotic Initiation Factor (eIF)4F complex and modulates the translation of specific mRNA targets in the kidney. We demonstrate that OFD1 cooperates with the mRNA binding protein Bicc1 to functionally control the protein synthesis machinery at the centrosome where also the PIC and eIF4F components were shown to localize in mammalian cells. Interestingly, Ofd1 and Bicc1 are both involved in renal cystogenesis and selected targets were shown to accumulate in two models of inherited renal cystic disease. Our results suggest a possible role for the centrosome as a specialized station to modulate translation for specific functions of the nearby ciliary structures and may provide functional clues for the understanding of renal cystic disease.

Collaboration


Dive into the Marco Chiaravalli's collaboration.

Top Co-Authors

Avatar

Alessandra Boletta

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Isaline Rowe

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Monika Pema

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Feng Qian

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Giovanna Musco

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Drusian

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maddalena Castelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Gregory G. Germino

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hangxue Xu

University of Maryland

View shared research outputs
Researchain Logo
Decentralizing Knowledge