Isaline Rowe
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isaline Rowe.
Molecular and Cellular Biology | 2009
Gianfranco Distefano; Manila Boca; Isaline Rowe; Claas Wodarczyk; Li Ma; Klaus Piontek; Gregory G. Germino; Pier Paolo Pandolfi; Alessandra Boletta
ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease characterized by bilateral renal cyst formation. Both hyperproliferation and hypertrophy have been previously observed in ADPKD kidneys. Polycystin-1 (PC-1), a large orphan receptor encoded by the PKD1 gene and mutated in 85% of all cases, is able to inhibit proliferation and apoptosis. Here we show that overexpression of PC-1 in renal epithelial cells inhibits cell growth (size) in a cell cycle-independent manner due to the downregulation of mTOR, S6K1, and 4EBP1. Upregulation of the same pathway leads to increased cell size, as found in mouse embryonic fibroblasts derived from Pkd1−/− mice. We show that PC-1 controls the mTOR pathway in a Tsc2-dependent manner, by inhibiting the extracellular signal-regulated kinase (ERK)-mediated phosphorylation of tuberin in Ser664. We provide a detailed molecular mechanism by which PC-1 can inhibit the mTOR pathway and regulate cell size.
Nature Medicine | 2013
Isaline Rowe; Marco Chiaravalli; Valeria Mannella; Valeria Ulisse; Giacomo Quilici; Monika Pema; Xuewen W Song; Hangxue Xu; Silvia Mari; Feng Qian; York Pei; Giovanna Musco; Alessandra Boletta
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Recent identification of signaling cascades deregulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still lacking. Using a metabolomic approach, we identify a pathogenic pathway in this disease that can be safely targeted for therapy. We show that mutation of PKD1 results in enhanced glycolysis in cells in a mouse model of PKD and in kidneys from humans with ADPKD. Glucose deprivation resulted in lower proliferation and higher apoptotic rates in PKD1-mutant cells than in nondeprived cells. Notably, two distinct PKD mouse models treated with 2-deoxyglucose (2DG), to inhibit glycolysis, had lower kidney weight, volume, cystic index and proliferation rates as compared to nontreated mice. These metabolic alterations depend on the extracellular signal-related kinase (ERK) pathway acting in a dual manner by inhibiting the liver kinase B1 (LKB1)–AMP-activated protein kinase (AMPK) axis on the one hand while activating the mTOR complex 1 (mTORC1)-glycolytic cascade on the other. Enhanced metabolic rates further inhibit AMPK. Forced activation of AMPK acts in a negative feedback loop, restoring normal ERK activity. Taken together, these data indicate that defective glucose metabolism is intimately involved in the pathobiology of ADPKD. Our findings provide a strong rationale for a new therapeutic strategy using existing drugs, either individually or in combination.
PLOS ONE | 2009
Claas Wodarczyk; Isaline Rowe; Marco Chiaravalli; Monika Pema; Feng Qian; Alessandra Boletta
Polycystin-1 (PC-1), the product of the PKD1 gene, mutated in the majority of cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD), is a very large (∼520 kDa) plasma membrane receptor localized in several subcellular compartments including cell-cell/matrix junctions as well as cilia. While heterologous over-expression systems have allowed identification of several of the potential biological roles of this receptor, its precise function remains largely elusive. Studying PC-1 in vivo has been a challenging task due to its complexity and low expression levels. To overcome these limitations and facilitate the study of endogenous PC-1, we have inserted HA- or Myc-tag sequences into the Pkd1 locus by homologous recombination. Here, we show that our approach was successful in generating a fully functional and easily detectable endogenous PC-1. Characterization of PC-1 distribution in vivo showed that it is expressed ubiquitously and is developmentally-regulated in most tissues. Furthermore, our novel tool allowed us to investigate the role of PC-1 in brain, where the protein is abundantly expressed. Subcellular localization of PC-1 revealed strong and specific staining in ciliated ependymal and choroid plexus cells. Consistent with this distribution, we observed hydrocephalus formation both in the ubiquitous knock-out embryos and in newborn mice with conditional inactivation of the Pkd1 gene in the brain. Both choroid plexus and ependymal cilia were morphologically normal in these mice, suggesting a role for PC-1 in ciliary function or signalling in this compartment, rather than in ciliogenesis. We propose that the role of PC-1 in the brain cilia might be to prevent hydrocephalus, a previously unrecognized role for this receptor and one that might have important implications for other genetic or sporadic diseases.
Nature Communications | 2013
Maddalena Castelli; Manila Boca; Marco Chiaravalli; Harini Ramalingam; Isaline Rowe; Gianfranco Distefano; Thomas J. Carroll; Alessandra Boletta
Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.
PLOS ONE | 2010
Claas Wodarczyk; Gianfranco Distefano; Isaline Rowe; Massimiliano Gaetani; Barbara Bricoli; Mordi Muorah; Andrea Spitaleri; Valeria Mannella; Piero Ricchiuto; Monika Pema; Maddalena Castelli; Ariel E. Casanova; Luca Mollica; Manuela Banzi; Manila Boca; Corinne Antignac; Sophie Saunier; Giovanna Musco; Alessandra Boletta
Mutations in PKD1, the gene encoding for the receptor Polycystin-1 (PC-1), cause autosomal dominant polycystic kidney disease (ADPKD). The cytoplasmic C-terminus of PC-1 contains a coiled-coil domain that mediates an interaction with the PKD2 gene product, Polycystin-2 (PC-2). Here we identify a novel domain in the PC-1 C-terminal tail, a polyproline motif mediating an interaction with Src homology domain 3 (SH3). A screen for interactions using the PC-1 C-terminal tail identified the SH3 domain of nephrocystin-1 (NPHP1) as a potential binding partner of PC-1. NPHP1 is the product of a gene that is mutated in a different form of renal cystic disease, nephronophthisis (NPHP). We show that in vitro pull-down assays and NMR structural studies confirmed the interaction between the PC-1 polyproline motif and the NPHP1 SH3 domain. Furthermore, the two full-length proteins interact through these domains; using a recently generated model system allowing us to track endogenous PC-1, we confirm the interaction between the endogenous proteins. Finally, we show that NPHP1 trafficking to cilia does not require PC-1 and that PC-1 may require NPHP1 to regulate resistance to apoptosis, but not to regulate cell cycle progression. In line with this, we find high levels of apoptosis in renal specimens of NPHP patients. Our data uncover a link between two different ciliopathies, ADPKD and NPHP, supporting the notion that common pathogenetic defects, possibly involving de-regulated apoptosis, underlie renal cyst formation.
Journal of The American Society of Nephrology | 2016
Marco Chiaravalli; Isaline Rowe; Valeria Mannella; Giacomo Quilici; Tamara Canu; Veronica Bianchi; Antonia Gurgone; Sofia Antunes; Patrizia D’Adamo; Antonio Esposito; Giovanna Musco; Alessandra Boletta
Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of ESRD for which there exists no approved therapy in the United States. Defective glucose metabolism has been identified as a feature of ADPKD, and inhibition of glycolysis using glucose analogs ameliorates aggressive PKD in preclinical models. Here, we investigated the effects of chronic treatment with low doses of the glucose analog 2-deoxy-d-glucose (2DG) on ADPKD progression in orthologous and slowly progressive murine models created by inducible inactivation of the Pkd1 gene postnatally. As previously reported, early inactivation (postnatal days 11 and 12) of Pkd1 resulted in PKD developing within weeks, whereas late inactivation (postnatal days 25-28) resulted in PKD developing in months. Irrespective of the timing of Pkd1 gene inactivation, cystic kidneys showed enhanced uptake of (13)C-glucose and conversion to (13)C-lactate. Administration of 2DG restored normal renal levels of the phosphorylated forms of AMP-activated protein kinase and its target acetyl-CoA carboxylase. Furthermore, 2DG greatly retarded disease progression in both model systems, reducing the increase in total kidney volume and cystic index and markedly reducing CD45-positive cell infiltration. Notably, chronic administration of low doses (100 mg/kg 5 days per week) of 2DG did not result in any obvious sign of toxicity as assessed by analysis of brain and heart histology as well as behavioral tests. Our data provide proof of principle support for the use of 2DG as a therapeutic strategy in ADPKD.
Nephrology Dialysis Transplantation | 2014
Isaline Rowe; Alessandra Boletta
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. The disease is caused by mutations in either the PKD1 or the PKD2 gene. Progress has been made in understanding the molecular basis of the disease leading to the general agreement on ADPKD being a loss-of-function disease. Identification of signalling cascades dysfunctional in the cystic epithelia has led to several pre-clinical studies of animal models using a variety of inhibitors to slow disease progression. These were followed by clinical trials, some of which generated promising results, although an approved therapy is still lacking. Here, we summarize and discuss recent work providing evidence that metabolic alterations can be observed in ADPKD. In particular, we will focus our discussion on the potential role of glucose metabolism in the pathogenesis of ADPKD. These recent findings provide a new perspective for the understanding of the pathobiology of ADPKD and open potential new avenues for therapeutical approaches. At the same time, these studies also raise important and intriguing biological and medical questions that will need to be addressed experimentally prior to embracing a more enthusiastic view of the applicability of the results.
Biochemical and Biophysical Research Communications | 2014
Isaline Rowe; Marco Chiaravalli; Klaus Piontek; Gregory G. Germino; Alessandra Boletta
Highlights • The PKD1 gene, mutated in ADPKD is developmentally regulated in the kidney.• Renal organ cultures of two distinct Pkd1 mutants display normal UB branching.• Glomeruli fail to properly develop in Pkd1 mutant renal organ cultures.• Defective endothelial cell migration likely accounts for glomerulogenesis defects.• PI3kinase inhibitors phenocopy the Pkd1 phenotype, VEGF minimally improves it.
Giornale di Tecniche Nefrologiche e Dialitiche | 2013
Isaline Rowe; Marco Chiaravalli; Alessandra Boletta
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Several aspects of the genetic and molecular mechanisms underlying cyst formation in this disease are still controversial, but there is today general agreement on ADPKD being a loss-of-function disease. In this brief article we specifically discuss 2 aspects: (i) we try to give an overview of the state-of-the-art of our current understanding of the genetic and molecular basis of the disease, trying to provide an integrated view of the different models of cystogenesis proposed; (ii) we provide a detailed description and a discussion of the recent findings reported by our laboratory on defective glucose metabolism in ADPKD and its potential therapeutical implications, highlighting also the need for further validation of our findings in additional animal models of late onset and slow progression.
Archive | 2015
Alessandra Boletta; Marco Chiaravalli; Isaline Rowe