Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Campanella is active.

Publication


Featured researches published by Alessandro Campanella.


Haematologica | 2010

Polarization dictates iron handling by inflammatory and alternatively activated macrophages

Gianfranca Corna; Lara Campana; Emanuele Pignatti; Alessandra Castiglioni; Enrico Tagliafico; Lidia Bosurgi; Alessandro Campanella; Silvia Brunelli; Angelo A. Manfredi; Pietro Apostoli; Laura Silvestri; Clara Camaschella; Patrizia Rovere-Querini

Background Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and Methods Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. Results M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize – albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. Conclusions Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with the ability to recycle the metal (M2).


FEBS Letters | 2003

Role of iron and ferritin in TNFα-induced apoptosis in HeLa cells

Anna Cozzi; Sonia Levi; Barbara Corsi; Paolo Santambrogio; Alessandro Campanella; Gianmario Gerardi; Paolo Arosio

We found that tumor necrosis factor α (TNFα)‐induced apoptosis in HeLa cells was accompanied by a ∼2‐fold increase in H‐ and L‐ferritin and a decrease in transferrin receptor, two indices of increased iron availability. Iron supplementation and overexpression of H‐ferritin or its mutant with an inactivated ferroxidase center reduced by about ∼50% the number of apoptotic cells after TNFα‐treatment, while overexpression of L‐ferritin was ineffective. The data indicate that H‐ferritin has an anti‐apoptotic activity unrelated to its ferroxidase activity and to its capacity to modify cellular iron metabolism.


Neurobiology of Disease | 2010

Oxidative stress and cell death in cells expressing L-ferritin variants causing neuroferritinopathy

Anna Cozzi; Elisabetta Rovelli; Grazia Frizzale; Alessandro Campanella; Mario Amendola; Paolo Arosio; Sonia Levi

Neuroferritinopathies are dominantly inherited movement disorders associated with nucleotide insertions in the L-ferritin gene that modify the proteins C-terminus. The insertions alter physical and functional properties of the ferritins, causing an imbalance in brain iron homeostasis. We describe the effects produced by the over-expression in HeLa and neuroblastoma SH-SY5Y cells of two pathogenic L-ferritin variants, 460InsA and 498InsTC. Both peptides co-assembled with endogenous ferritins, producing molecules with reduced iron incorporation capacity, acting in a dominant negative manner. The cells showed an increase in cell death and a decrease in proteasomal activity. The formation of iron-ferritin aggregates became evident after 10 days of variant expression and was not associated with increased cell death. The addition of iron chelators or antioxidants restored proteasomal activity and reduced aggregate formation. The data indicate that cellular iron imbalance and oxidative damage are primary causes of cell death, while aggregate formation is a secondary effect.


British Journal of Haematology | 2000

A new mutation (G51C) in the iron-responsive element (IRE) of L-ferritin associated with hyperferritinaemia-cataract syndrome decreases the binding affinity of the mutated IRE for iron-regulatory proteins

Clara Camaschella; Gabriella Zecchina; Gillian Lockitch; Antonella Roetto; Alessandro Campanella; Paolo Arosio; Sonia Levi

Hereditary hyperferritinaemia–cataract syndrome is an autosomal dominant disorder characterized by a constitutively increased synthesis of l‐ferritin in the absence of iron overload. The disorder is associated with point mutations in the iron‐responsive element (IRE) of l‐ferritin mRNA. We report a new mutation, G51C, identified in two members of a Canadian family, presenting a moderate increase in serum ferritin and a clinically silent bilateral cataract. Gel retardation assays showed that the binding of the mutated IRE to iron‐regulatory proteins (IRPs) was reduced compared with the wild type. Structural modelling predicted that the G51C induces a rearrangement of base pairing at the lateral bulge of the IRE structure which is likely to modify IRE conformation.


Journal of Biological Chemistry | 2005

Loss of the von Hippel Lindau Tumor Suppressor Disrupts Iron Homeostasis in Renal Carcinoma Cells

Alessandra Alberghini; Stefania Recalcati; Lorenza Tacchini; Paolo Santambrogio; Alessandro Campanella; Gaetano Cairo

Given the modulation of iron metabolism by hypoxia and the high iron requirement of neoplastic cells, we investigated iron metabolism in a human renal cancer cell line with a mutated von Hippel Lindau (VHL) tumor suppressor gene (RCC10) and in a transfectant clone with wild-type VHL (RCC63). The loss of VHL strongly up-regulated transferrin receptor expression in RCC10 cells as a result of hypoxia inducible factor-1 (HIF-1)-mediated transcriptional activation, leading to an increased uptake of transferrin-bound 55Fe. Increased iron availability did not compromise the resistance of VHL-defective cells to oxidative stress or promote faster cell multiplication. Surprisingly, the content of ferritin H and L subunits and ferritin mRNA levels were considerably lower in the RCC10 than in the RCC63 cells. Despite the similarities between HIF-1 and iron regulatory protein 2 (IRP2), we found no evidence of specific regulation of IRP2 by VHL. However, both IRP2 and IRP1 were slightly activated in RCC10 cells, thus indicating that this cell line has a somewhat reduced labile iron pool (LIP). The finding that RCC10 cells had a lower ferritin content but more ferritin-associated 55Fe than RCC63 explains why VHL-lacking cells may have a smaller LIP despite increased iron uptake. We also found a correlation between cytoprotection from iron-mediated damage and efficient incorporation into ferritin of both transferrin and non-transferrin-bound 55Fe. This study shows that, like oncogene activation, the loss of an oncosuppressor rearranges the expression pattern of the genes of iron metabolism to increase iron availability. However, in the case of VHL loss, mechanisms affecting iron handling by ferritin somehow counteract the effects that the reduced content of this protective protein may have on proliferation and oxidant sensitivity.


Biochimica et Biophysica Acta | 2013

Iron uptake in quiescent and inflammation-activated astrocytes: A potentially neuroprotective control of iron burden

Ilaria Pelizzoni; Daniele Zacchetti; Alessandro Campanella; Fabio Grohovaz; Franca Codazzi

Astrocytes play a crucial role in proper iron handling within the central nervous system. This competence can be fundamental, particularly during neuroinflammation, and neurodegenerative processes, where an increase in iron content can favor oxidative stress, thereby worsening disease progression. Under these pathological conditions, astrocytes undergo a process of activation that confers them either a beneficial or a detrimental role on neuronal survival. Our work investigates the mechanisms of iron entry in cultures of quiescent and activated hippocampal astrocytes. Our data confirm that the main source of iron is the non-transferrin-bound iron (NTBI) and show the involvement of two different routes for its entry: the resident transient receptor potential (TRP) channels in quiescent astrocytes and the de novo expressed divalent metal transporter 1 (DMT1) in activated astrocytes, which accounts for a potentiation of iron entry. Overall, our data suggest that at rest, but even more after activation, astrocytes have the potential to buffer the excess of iron, thereby protecting neurons from iron overload. These findings further extend our understanding of the protective role of astrocytes under the conditions of iron-mediated oxidative stress observed in several neurodegenerative conditions.


Neurobiology of Disease | 2010

Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation

Maura Poli; Manuela Derosas; Sara Luscieti; Patrizia Cavadini; Alessandro Campanella; Rosanna Verardi; Dario Finazzi; Paolo Arosio

Pantothenate kinase 2 (Pank2) is a mitochondrial enzyme that catalyses the first regulatory step of Coenzyme A synthesis and that is responsible for a genetic movement disorder named Pank-associated neurodegeneration (PKAN). This is characterized by abnormal iron accumulation in the brain, particularly in the globus pallidus. We downregulated Pank2 in some cell lines by using specific siRNAs to study its effect on iron homeostasis. In HeLa cells this caused a reduction of cell proliferation and of aconitase activity, signs of cytosolic iron deficiency without mitochondrial iron deposition, and a 12-fold induction of ferroportin mRNA. Pank2 silencing caused a strong induction of ferroportin mRNA also in hepatoma HepG2, a modest one in neuroblastoma SH-SY5Y and none in glioma U373 cells. A reduction of cell growth was observed in all these cell types. The strong Pank2-mediated alteration of ferroportin expression in some cell types might alter iron transfer to the brain and be connected with brain iron accumulation.


Blood | 2016

Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice.

Antonella Nai; Aude Rubio; Alessandro Campanella; Ophélie Gourbeyre; Irene Artuso; Jessica Bordini; Aurélie Gineste; Chloé Latour; Céline Besson-Fournier; Herbert Y. Lin; Hélène Coppin; Marie Paule Roth; Clara Camaschella; Laura Silvestri; Delphine Meynard

Hepcidin, the main regulator of iron homeostasis, is repressed when erythropoiesis is acutely stimulated by erythropoietin (EPO) to favor iron supply to maturing erythroblasts. Erythroferrone (ERFE) has been identified as the erythroid regulator that inhibits hepcidin in stress erythropoiesis. A powerful hepcidin inhibitor is the serine protease matriptase-2, encoded by TMPRSS6, whose mutations cause iron refractory iron deficiency anemia. Because this condition has inappropriately elevated hepcidin in the presence of high EPO levels, a role is suggested for matriptase-2 in EPO-mediated hepcidin repression. To investigate the relationship between EPO/ERFE and matriptase-2, we show that EPO injection induces Erfe messenger RNA expression but does not suppress hepcidin in Tmprss6 knockout (KO) mice. Similarly, wild-type (WT) animals, in which the bone morphogenetic protein-mothers against decapentaplegic homolog (Bmp-Smad) pathway is upregulated by iron treatment, fail to suppress hepcidin in response to EPO. To further investigate whether the high level of Bmp-Smad signaling of Tmprss6 KO mice counteracts hepcidin suppression by EPO, we generated double KO Bmp6-Tmprss6 KO mice. Despite having Bmp-Smad signaling and hepcidin levels that are similar to WT mice under basal conditions, double KO mice do not suppress hepcidin in response to EPO. However, pharmacologic downstream inhibition of the Bmp-Smad pathway by dorsomorphin, which targets the BMP receptors, improves the hepcidin responsiveness to EPO in Tmprss6 KO mice. We concluded that the function of matriptase-2 is dominant over that of ERFE and is essential in facilitating hepcidin suppression by attenuating the BMP-SMAD signaling.


PLOS ONE | 2015

Bmp6 Expression in Murine Liver Non Parenchymal Cells: A Mechanism to Control their High Iron Exporter Activity and Protect Hepatocytes from Iron Overload?

Marco Rausa; Alessia Pagani; Antonella Nai; Alessandro Campanella; Maria Enrica Gilberti; Pietro Apostoli; Clara Camaschella; Laura Silvestri

Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production.


Haematologica | 2011

Over-expression of mitochondrial ferritin affects the JAK2/STAT5 pathway in K562 cells and causes mitochondrial iron accumulation

Paolo Santambrogio; Benedetta Gaia Erba; Alessandro Campanella; Anna Cozzi; Vincenza Causarano; Laura Cremonesi; Anna Gallì; Matteo G. Della Porta; Rosangela Invernizzi; Sonia Levi

Background Mitochondrial ferritin is a nuclear encoded iron-storage protein localized in mitochondria. It has anti-oxidant properties related to its ferroxidase activity, and it is able to sequester iron avidly into the organelle. The protein has a tissue-specific pattern of expression and is also highly expressed in sideroblasts of patients affected by hereditary sideroblastic anemia and by refractory anemia with ringed sideroblasts. The present study examined whether mitochondrial ferritin has a role in the pathogenesis of these diseases. Design and Methods We analyzed the effect of mitochondrial ferritin over-expression on the JAK2/STAT5 pathway, on iron metabolism and on heme synthesis in erythroleukemic cell lines. Furthermore its effect on apoptosis was evaluated on human erythroid progenitors. Results Data revealed that a high level of mitochondrial ferritin reduced reactive oxygen species and Stat5 phosphorylation while promoting mitochondrial iron loading and cytosolic iron starvation. The decline of Stat5 phosphorylation induced a decrease of the level of anti-apoptotic Bcl-xL transcript compared to that in control cells; however, transferrin receptor 1 transcript increased due to the activation of the iron responsive element/iron regulatory protein machinery. Also, high expression of mitochondrial ferritin increased apoptosis, limited heme synthesis and promoted the formation of Perls-positive granules, identified by electron microscopy as iron granules in mitochondria. Conclusions Our results provide evidence suggesting that Stat5-dependent transcriptional regulation is displaced by strong cytosolic iron starvation status induced by mitochondrial ferritin. The protein interferes with JAK2/STAT5 pathways and with the mechanism of mitochondrial iron accumulation.

Collaboration


Dive into the Alessandro Campanella's collaboration.

Top Co-Authors

Avatar

Sonia Levi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Clara Camaschella

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Paolo Santambrogio

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Anna Cozzi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Laura Silvestri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonella Nai

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabetta Rovelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Jessica Bordini

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge