Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessandro Cecconello is active.

Publication


Featured researches published by Alessandro Cecconello.


Advanced Materials | 2015

pH‐Stimulated DNA Hydrogels Exhibiting Shape‐Memory Properties

Weiwei Guo; Chun-Hua Lu; Ron Orbach; Fuan Wang; Xiu-Juan Qi; Alessandro Cecconello; Dror Seliktar; Itamar Willner

Nucleic acid-functionalized polyacrylamide chains that are cooperatively cross-linked by i-motif and nucleic acid duplex units yield, at pH 5.0, DNA hydrogels exhibiting shape-memory properties. Separation of the i-motif units at pH 8.0 dissolves the hydrogel into a quasi-liquid phase. The residual duplex units provide, however, a memory code in the quasi-liquid allowing the regeneration of the hydrogel shape at pH 5.0.


Nature Communications | 2013

Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines

Johann Elbaz; Alessandro Cecconello; Zhiyuan Fan; Alexander O. Govorov; Itamar Willner

DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.


Nano Letters | 2013

A Three-Station DNA Catenane Rotary Motor with Controlled Directionality

Chun-Hua Lu; Alessandro Cecconello; Johann Elbaz; Alberto Credi; Itamar Willner

The assembly of DNA machines represents a central effort in DNA nanotechnology. We report on the first DNA rotor system composed of a two-ring catenane. The DNA rotor ring rotates in dictated directions along a wheel, and it occupies three distinct sites. Hg(2+)/cysteine or pH (H(+)/OH(-)) act as fuels or antifuels in positioning the rotor ring. Analysis of the kinetics reveals directional clockwise or anticlockwise population of the target-sites (>85%), and the rotors direction is controlled by the shortest path on the wheel.


Nano Letters | 2015

Integration of Switchable DNA-Based Hydrogels with Surfaces by the Hybridization Chain Reaction.

Jason S. Kahn; Alexander Trifonov; Alessandro Cecconello; Weiwei Guo; Chunhai Fan; Itamar Willner

A novel method to assemble acrylamide/acrydite DNA copolymer hydrogels on surfaces, specifically gold-coated surfaces, is introduced. The method involves the synthesis of two different copolymer chains consisting of hairpin A, HA, modified acrylamide copolymer and hairpin B, HB, acrylamide copolymer. In the presence of a nucleic acid promoter monolayer associated with the surface, the hybridization chain reaction between the two hairpin-modified polymer chains is initiated, giving rise to the cross-opening of hairpins HA and HB and the formation of a cross-linked hydrogel on the surface. By the cofunctionalization of the HA- and HB-modified polymer chains with G-rich DNA tethers that include the G-quadruplex subunits, hydrogels of switchable stiffness are generated. In the presence of K(+)-ions, the hydrogel associated with the surface is cooperatively cross-linked by duplex units of HA and HB, and K(+)-ion-stabilized G-quadruplex units, giving rise to a stiff hydrogel. The 18-crown-6-ether-stimulated elimination of the K(+)-ions dissociates the bridging G-quadruplex units, resulting in a hydrogel of reduced stiffness. The duplex/G-quadruplex cooperatively stabilized hydrogel associated with the surface reveals switchable electrocatalytic properties. The incorporation of hemin into the G-quadruplex units electrocatalyzes the reduction of H2O2. The 18-crown-6-ether stimulated dissociation of the hemin/G-quadruplex bridging units leads to a catalytically inactive hydrogel.


Nano Letters | 2013

Metal nanoparticle-functionalized DNA tweezers: from mechanically programmed nanostructures to switchable fluorescence properties.

Simcha Shimron; Alessandro Cecconello; Chun-Hua Lu; Itamar Willner

DNA tweezers are modified with two 10-nm sized Au NPs and one 5-nm sized Au NP. Upon treatment of the tweezers with fuel and antifuel nucleic acid strands, the switchable closure and opening of the tweezers proceed, leading to the control of programmed nanostructures of the tethered NPs. The tweezers are further modified with a single 10-nm sized nanoparticle, and a fluorophore unit (Cy3), positioned at different distinct sites of the tweezers. The reversible and cyclic fluorescence quenching or fluorescence enhancement phenomena, upon the dynamic opening/closure of the different tweezers, are demonstrated.


Nano Letters | 2014

Dual Switchable CRET-Induced Luminescence of CdSe/ZnS Quantum Dots (QDs) by the Hemin/G-Quadruplex-Bridged Aggregation and Deaggregation of Two-Sized QDs

Lianzhe Hu; Xiaoqing Liu; Alessandro Cecconello; Itamar Willner

The hemin/G-quadruplex-catalyzed generation of chemiluminescence through the oxidation of luminol by H2O2 stimulates the chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs), resulting in the luminescence of the QDs. By the cyclic K(+)-ion-induced formation of the hemin/G-quadruplex linked to the QDs, and the separation of the G-quadruplex in the presence of 18-crown-6-ether, the ON-OFF switchable CRET-induced luminescence of the QDs is demonstrated. QDs were modified with nucleic acids consisting of the G-quadruplex subunits sequences and of programmed domains that can be cross-linked through hybridization, using an auxiliary scaffold. In the presence of K(+)-ions, the QDs aggregate through the cooperative stabilization of K(+)-ion-stabilized G-quadruplex bridges and duplex domains between the auxiliary scaffold and the nucleic acids associated with the QDs. In the presence of 18-crown-6-ether, the K(+)-ions are eliminated from the G-quadruplex units, leading to the separation of the aggregated QDs. By the cyclic treatment of the QDs with K(+)-ions/18-crown-6-ether, the reversible aggregation/deaggregation of the QDs is demonstrated. The incorporation of hemin into the K(+)-ion-stabilized G-quadruplex leads to the ON-OFF switchable CRET-stimulated luminescence of the QDs. By the mixing of appropriately modified two-sized QDs, emitting at 540 and 610 nm, the dual ON-OFF activation of the luminescence of the QDs is demonstrated.


Journal of the American Chemical Society | 2016

Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures

Chun-Hua Lu; Alessandro Cecconello; Itamar Willner

Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed.


Nano Letters | 2012

Helquat-Induced Chiroselective Aggregation of Au NPs

Dora Balogh; Zhanxia Zhang; Alessandro Cecconello; Jan Vávra; Lukáš Severa; Filip Teply; Itamar Willner

Au nanoparticles (NPs) are functionalized with chiral (R) or (S) binaphthol phenylboronic acid ligands, (1a) or (1b). The (R)- or (S)-binaphthol phenylboronic acid ligands form donor-acceptor complexes with the chiral dicationic helicene, helquat (P)-HQ(2+) or (M)-HQ(2+), (2a) or (2b). The association constants between (1a)/(2a) and (1a)/(2b) correspond to (7.0 ± 0.5) × 10(5) M(-1) and (2.5 ± 0.3) × 10(5) M(-1), respectively, whereas the association constants between (1b)/(2b) and (1b)/(2a) correspond to (4.0 ± 0.5) × 10(5) M(-1) and (1.8 ± 0.3) × 10(5) M(-1), respectively. Chiroselective aggregation of chiral binaphthol phenylboronic acid-capped Au NPs triggered by the chiral helquats, is demonstrated.


Journal of the American Chemical Society | 2016

DNA Scaffolds for the Dictated Assembly of Left-/Right-Handed Plasmonic Au NP Helices with Programmed Chiro-Optical Properties

Alessandro Cecconello; Jason S. Kahn; Chun-Hua Lu; Larousse Khosravi Khorashad; Alexander O. Govorov; Itamar Willner

Within the broad interest of assembling chiral left- and right-handed helices of plasmonic nanoparticles (NPs), we introduce the DNA-guided organization of left- or right-handed plasmonic Au NPs on DNA scaffolds. The method involves the self-assembly of stacked 12 DNA quasi-rings interlinked by 30 staple-strands. By the functionalization of one group of staple units with programmed tether-nucleic acid strands and additional staple elements with long nucleic acid chains, acting as promoter strands, the promoter-guided assembly of barrels modified with 12 left- or right-handed tethers is achieved. The subsequent hybridization of Au NPs functionalized with single nucleic acid tethers yields left- or right-handed structures of plasmonic NPs. The plasmonic NP structures reveal CD spectra at the plasmon absorbance, and the NPs are imaged by HR-TEM. Using geometrical considerations corresponding to the left- and right-handed helices of the Au NPs, the experimental CD spectra of the plasmonic Au NPs are modeled by theoretical calculations.


Nano Letters | 2017

Mimicking Peroxidase Activities with Prussian Blue Nanoparticles and Their Cyanometalate Structural Analogues

Margarita Vázquez-González; Rebeca M. Torrente-Rodríguez; Anna Kozell; Wei-Ching Liao; Alessandro Cecconello; Susana Campuzano; José M. Pingarrón; Itamar Willner

Nanoparticles composed of Prussian Blue, PB, and the cyanometalate structural analogues, CuFe, FeCoFe, and FeCo, are examined as inorganic clusters that mimic the functions of peroxidases. PB acts as a superior catalyst for the oxidation of dopamine to aminochrome by H2O2. The oxidation of dopamine by H2O2 in the presence of PB is 6-fold faster than in the presence of CuFe. The cluster FeCo does not catalyze the oxidation of dopamine to aminochrome. The most efficient catalyst for the generation of chemiluminescence by the oxidation of luminol by H2O2 is, however, FeCo, and PB lacks any catalytic activity toward the generation of chemiluminescence. The order of catalyzed chemiluminescence generation is FeCo ≫ CuFe > FeCoFe. The clusters PB, CuFe, FeCoFe, and FeCo mimic the functions of NADH peroxidase. The catalyzed oxidation of NADH by H2O2 to form NAD+ follows the order PB ≫ CuFe ∼ FeCoFe, FeCo. The efficient generation of chemiluminescence by the FeCo-catalyzed oxidation of luminol by H2O2 is used to develop a glucose sensor. The aerobic oxidation of glucose in the presence of glucose oxidase, GOx, yields gluconic acid and H2O2. The chemiluminescence intensities formed by the GOx-generated H2O2 relate to the concentration of glucose, thus providing a quantitative readout signal for the concentrations of glucose.

Collaboration


Dive into the Alessandro Cecconello's collaboration.

Top Co-Authors

Avatar

Itamar Willner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel Nechushtai

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Wei-Ching Liao

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Wei-Hai Chen

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yang Sung Sohn

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Anna Kozell

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Jason S. Kahn

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michael Fadeev

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Xu Yu

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge