Yang Sung Sohn
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yang Sung Sohn.
Journal of the American Chemical Society | 2016
Fujian Huang; Wei-Ching Liao; Yang Sung Sohn; Rachel Nechushtai; Chun-Hua Lu; Itamar Willner
A method to assemble light-responsive or pH-responsive microcapsules loaded with different loads (tetramethylrhodamine-modified dextran, TMR-D; microperoxidase-11, MP-11; CdSe/ZnS quantum dots; or doxorubicin-modified dextran, DOX-D) is described. The method is based on the layer-by-layer deposition of sequence-specific nucleic acids on poly(allylamine hydrochloride)-functionalized CaCO3 core microparticles, loaded with the different loads, that after the dissolution of the core particles with EDTA yields the stimuli-responsive microcapsules that include the respective loads. The light-responsive microcapsules are composed of photocleavable o-nitrobenzyl-phosphate-modified DNA shells, and the pH-responsive microcapsules are made of a cytosine-rich layer cross-linked by nucleic acid bridges. Irradiating the o-nitrobenzyl phosphate-functionalized microcapsules, λ = 365 nm, or subjecting the pH-responsive microcapsules to pH = 5.0, results in the cleavage of the microcapsule shells and the release of the loads. Preliminary studies address the cytotoxicity of the DOX-D-loaded microcapsules toward MDA-MB-231 breast cancer cells and normal MCF-10A breast epithelial cells. Selective cytotoxicity of the DOX-D-loaded microcapsules toward cancer cells is demonstrated.
Journal of Cell Science | 2016
Sarah H. Holt; Merav Darash-Yahana; Yang Sung Sohn; Luhua Song; Ola Karmi; Sagi Tamir; Dorit Michaeli; Yuting Luo; Mark L. Paddock; Patricia A. Jennings; José N. Onuchic; Rajeev K. Azad; Eli Pikarsky; Ioav Cabantchik; Rachel Nechushtai; Ron Mittler
ABSTRACT Maintaining iron (Fe) ion and reactive oxygen species homeostasis is essential for cellular function, mitochondrial integrity and the regulation of cell death pathways, and is recognized as a key process underlying the molecular basis of aging and various diseases, such as diabetes, neurodegenerative diseases and cancer. Nutrient-deprivation autophagy factor 1 (NAF-1; also known as CISD2) belongs to a newly discovered class of Fe-sulfur proteins that are localized to the outer mitochondrial membrane and the endoplasmic reticulum. It has been implicated in regulating homeostasis of Fe ions, as well as the activation of autophagy through interaction with BCL-2. Here we show that small hairpin (sh)RNA-mediated suppression of NAF-1 results in the activation of apoptosis in epithelial breast cancer cells and xenograft tumors. Suppression of NAF-1 resulted in increased uptake of Fe ions into cells, a metabolic shift that rendered cells more susceptible to a glycolysis inhibitor, and the activation of cellular stress pathways that are associated with HIF1α. Our studies suggest that NAF-1 is a major player in the metabolic regulation of breast cancer cells through its effects on cellular Fe ion distribution, mitochondrial metabolism and the induction of apoptosis. Summary: NAF-1 is a major player in the metabolic regulation of breast cancer cells through its effects on cellular Fe ion distribution, mitochondrial metabolism and the induction of apoptosis.
ACS Applied Materials & Interfaces | 2016
Vered Heleg-Shabtai; Ruth Aizen; Etery Sharon; Yang Sung Sohn; Alexander Trifonov; Natalie Enkin; Lina Freage; Rachel Nechushtai; Itamar Willner
Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Colin H. Lipper; Ola Karmi; Yang Sung Sohn; Merav Darash-Yahana; Heiko Lammert; Luhua Song; Amy Liu; Ron Mittler; Rachel Nechushtai; José N. Onuchic; Patricia A. Jennings
Significance NEET proteins belong to a unique family of iron-sulfur (Fe-S) proteins that regulate iron and reactive oxygen homeostasis and are involved in the progression of cancer, diabetes, neurodegeneration, and aging. Of the three human NEET proteins, the structure and function of the mitochondrial matrix-localized mitochondrial inner NEET protein (MiNT) are unknown. Here, we show that MiNT is a pseudosymmetrical monomeric protein that contains two distinct Fe-S cluster-binding motifs. MiNT transfers its clusters to the human mitochondrial ferredoxins FDX1/adrenodoxin and FDX2 and is required for regulating iron and reactive oxygen species levels in the mitochondria. Our study demonstrates that although MiNT differs in structure and localization from its homodimeric NEET counterparts, it nevertheless cooperates with them in the same important pathway. The NEET family is a relatively new class of three related [2Fe-2S] proteins (CISD1–3), important in human health and disease. While there has been growing interest in the homodimeric gene products of CISD1 (mitoNEET) and CISD2 (NAF-1), the importance of the inner mitochondrial CISD3 protein has only recently been recognized in cancer. The CISD3 gene encodes for a monomeric protein that contains two [2Fe-2S] CDGSH motifs, which we term mitochondrial inner NEET protein (MiNT). It folds with a pseudosymmetrical fold that provides a hydrophobic motif on one side and a relatively hydrophilic surface on the diametrically opposed surface. Interestingly, as shown by molecular dynamics simulation, the protein displays distinct asymmetrical backbone motions, unlike its homodimeric counterparts that face the cytosolic side of the outer mitochondrial membrane/endoplasmic reticulum (ER). However, like its counterparts, our biological studies indicate that knockdown of MiNT leads to increased accumulation of mitochondrial labile iron, as well as increased mitochondrial reactive oxygen production. Taken together, our study suggests that the MiNT protein functions in the same pathway as its homodimeric counterparts (mitoNEET and NAF-1), and could be a key player in this pathway within the mitochondria. As such, it represents a target for anticancer or antidiabetic drug development.
Antioxidants & Redox Signaling | 2018
Ron Mittler; Merav Darash-Yahana; Yang Sung Sohn; Fang Bai; Luhua Song; Ioav Zvi Cabantchik; Patricia A. Jennings; José N. Onuchic; Rachel Nechushtai
SIGNIFICANCE Cancer cells accumulate high levels of iron and reactive oxygen species (ROS) to promote their high metabolic activity and proliferation rate. However, high levels of iron and ROS can also lead to enhanced oxidative stress and the activation of cell death pathways such as apoptosis and ferroptosis. This has led to the proposal that different drugs that target iron and/or ROS metabolism could be used as anticancer drugs. However, due to the complex role iron and ROS play in cells, the majority of these drugs yielded mixed results, highlighting a critical need to identify new players in the regulation of iron and ROS homeostasis in cancer cells. Recent Advances: NEET proteins belong to a newly discovered class of iron-sulfur proteins (2Fe-2S) required for the regulation of iron and ROS homeostasis in cells. Recent studies revealed that the NEET proteins NAF-1 (CISD2) and mitoNEET (CISD1) play a critical role in promoting the proliferation of cancer cells, supporting tumor growth and metastasis. Moreover, the function of NEET proteins in cancer cells was found to be dependent of the degree of lability of their 2Fe-2S clusters. CRITICAL ISSUES NEET proteins could represent a key regulatory link between the maintenance of high iron and ROS in cancer cells, the activation of cell death and survival pathways, and cellular proliferation. FUTURE DIRECTIONS Because the function of NEET proteins depends on the lability of their clusters, drugs that target the 2Fe2S clusters of NEET proteins could be used as promising anticancer drugs.
Biochimica et Biophysica Acta | 2015
Sagi Tamir; Mark L. Paddock; Merav Darash-Yahana-Baram; Sarah H. Holt; Yang Sung Sohn; Lily Agranat; Dorit Michaeli; Jason T. Stofleth; Colin H. Lipper; Faruck Morcos; Ioav Cabantchik; José N. Onuchic; Patricia A. Jennings; Ron Mittler; Rachel Nechushtai
Advanced Functional Materials | 2016
Wei-Ching Liao; Yang Sung Sohn; Marianna Riutin; Alessandro Cecconello; Wolfgang J. Parak; Rachel Nechushtai; Itamar Willner
Advanced Functional Materials | 2014
Zhanxia Zhang; Fuan Wang; Yang Sung Sohn; Rachel Nechushtai; Itamar Willner
Advanced Functional Materials | 2017
Wei-Hai Chen; Xu Yu; Wei-Ching Liao; Yang Sung Sohn; Alessandro Cecconello; Anna Kozell; Rachel Nechushtai; Itamar Willner
Chemical Science | 2017
Wei-Ching Liao; Sivan Lilienthal; Jason S. Kahn; Marianna Riutin; Yang Sung Sohn; Rachel Nechushtai; Itamar Willner