Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Davide Serruto is active.

Publication


Featured researches published by Davide Serruto.


Journal of Experimental Medicine | 2003

Vaccination against Neisseria meningitidis Using Three Variants of the Lipoprotein GNA1870

Vega Masignani; Maurizio Comanducci; Marzia Monica Giuliani; Stefania Bambini; Jeannette Adu-Bobie; Beatrice Aricò; Brunella Brunelli; Alessandro Pieri; Laura Santini; Silvana Savino; Davide Serruto; David Litt; Simon Kroll; Jo Anne Welsch; Dan M. Granoff; Rino Rappuoli; Mariagrazia Pizza

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.


Nature Reviews Microbiology | 2008

Microbiology in the post-genomic era

Duccio Medini; Davide Serruto; Julian Parkhill; David A. Relman; Claudio Donati; Richard Moxon; Stanley Falkow; Rino Rappuoli

Genomics has revolutionized every aspect of microbiology. Now, 13 years after the first bacterial genome was sequenced, it is important to pause and consider what has changed in microbiology research as a consequence of genomics. In this article, we review the evolving field of bacterial typing and the genomic technologies that enable comparative analysis of multiple genomes and the metagenomes of complex microbial environments, and address the implications of the genomic era for the future of microbiology.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines

John Donnelly; Ducci O. Medini; Giusepp E. Boccadifuoco; Alessia Biolchi; Joel I. Ward; Carl E. Frasch; E. Richard Moxon; Maria Stella; Maurizio Comanducci; Stefania Bambini; Alessandro Muzzi; William H. Andrews; Jie Chen; George W. Santos; Laura Santini; Philip Boucher; Davide Serruto; Mariagrazia Pizza; Rino Rappuoli; Marzia Monica Giuliani

A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.


Lancet Infectious Diseases | 2013

Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment.

Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli

BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans

Davide Serruto; Tiziana Spadafina; Laura Ciucchi; Lisa A. Lewis; Sanjay Ram; Marta Tontini; Laura Santini; Alessia Biolchi; Kate L. Seib; Marzia Monica Giuliani; John Donnelly; Francesco Berti; Silvana Savino; Maria Scarselli; Paolo Costantino; J. Simon Kroll; Clíona O’Dwyer; Jiazhou Qiu; Andrew G. Plaut; Richard Moxon; Rino Rappuoli; Mariagrazia Pizza; Beatrice Aricò

GNA2132 is a Neisseria meningitidis antigen of unknown function, discovered by reverse vaccinology, which has been shown to induce bactericidal antibodies in animal models. Here we show that this antigen induces protective immunity in humans and it is recognized by sera of patients after meningococcal disease. The protein binds heparin in vitro through an Arg-rich region and this property correlates with increased survival of the unencapsulated bacterium in human serum. Furthermore, two proteases, the meningococcal NalP and human lactoferrin, cleave the protein upstream and downstream from the Arg-rich region, respectively. We conclude that GNA2132 is an important protective antigen of N. meningitidis and we propose to rename it, Neisserial Heparin Binding Antigen (NHBA).


Vaccine | 2012

The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens.

Davide Serruto; Matthew J. Bottomley; Sanjay Ram; Marzia Monica Giuliani; Rino Rappuoli

Neisseria meningitidis is a major cause of endemic cases and epidemics of meningitis and devastating septicemia. Although effective vaccines exist for several serogroups of pathogenic N. meningitidis, conventional vaccinology approaches have failed to provide a universal solution for serogroup B (MenB) which consequently remains an important burden of disease worldwide. The advent of whole-genome sequencing changed the approach to vaccine development, enabling the identification of potential vaccine candidates starting directly with the genomic information, with a process named reverse vaccinology. The application of reverse vaccinology to MenB allowed the identification of new protein antigens able to induce bactericidal antibodies. Three highly immunogenic antigens (fHbp, NadA and NHBA) were combined with outer membrane vesicles and formulated for human use in a multicomponent vaccine, named 4CMenB. This is the first MenB vaccine based on recombinant proteins able to elicit a robust bactericidal immune response in adults, adolescents and infants against a broad range of serogroup B isolates. This review describes the successful story of the development of the 4CMenB vaccine, with particular emphasis on the functional, immunological and structural characterization of the protein antigens included in the vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination

Sonia Budroni; Emilio Siena; Julie C. Dunning Hotopp; Kate L. Seib; Davide Serruto; Chiara Nofroni; Maurizio Comanducci; David Riley; Sean C. Daugherty; Samuel V. Angiuoli; Antonello Covacci; Mariagrazia Pizza; Rino Rappuoli; E. Richard Moxon; Hervé Tettelin; Duccio Medini

Molecular data on a limited number of chromosomal loci have shown that the population of Neisseria meningitidis (Nm), a deadly human pathogen, is structured in distinct lineages. Given that the Nm population undergoes substantial recombination, the mechanisms resulting in the evolution of these lineages, their persistence in time, and the implications for the pathogenicity of the bacterium are not yet completely understood. Based on whole-genome sequencing, we show that Nm is structured in phylogenetic clades. Through acquisition of specific genes and through insertions and rearrangements, each clade has acquired and remodeled specific genomic tracts, with the potential to impact on the commensal and virulence behavior of Nm. Despite this clear evidence of a structured population, we confirm high rates of detectable recombination throughout the whole Nm chromosome. However, gene conversion events were found to be longer within clades than between clades, suggesting a DNA cleavage mechanism associated with the phylogeny of the species. We identify 22 restriction modification systems, probably acquired by horizontal gene transfer from outside of the species/genus, whose distribution in the different strains coincides with the phylogenetic clade structure. We provide evidence that these clade-associated restriction modification systems generate a differential barrier to DNA exchange consistent with the observed population structure. These findings have general implications for the emergence of lineage structure and virulence in recombining bacterial populations, and they could provide an evolutionary framework for the population biology of a number of other bacterial species that show contradictory population structure and dynamics.


Journal of Bacteriology | 2013

Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen Clostridium difficile

Tanja Ðapa; Rosanna Leuzzi; Yen Kuan Ng; Soza T. Baban; Roberto Adamo; Sarah A. Kuehne; Maria Scarselli; Nigel P. Minton; Davide Serruto; Meera Unnikrishnan

Bacteria within biofilms are protected from multiple stresses, including immune responses and antimicrobial agents. The biofilm-forming ability of bacterial pathogens has been associated with increased antibiotic resistance and chronic recurrent infections. Although biofilms have been well studied for several gut pathogens, little is known about biofilm formation by anaerobic gut species. The obligate anaerobe Clostridium difficile causes C. difficile infection (CDI), a major health care-associated problem primarily due to the high incidence of recurring infections. C. difficile colonizes the gut when the normal intestinal microflora is disrupted by antimicrobial agents; however, the factors or processes involved in gut colonization during infection remain unclear. We demonstrate that clinical C. difficile strains, i.e., strain 630 and the hypervirulent strain R20291, form structured biofilms in vitro, with R20291 accumulating substantially more biofilm. Microscopic and biochemical analyses show multiple layers of bacteria encased in a biofilm matrix containing proteins, DNA, and polysaccharide. Employing isogenic mutants, we show that virulence-associated proteins, Cwp84, flagella, and a putative quorum-sensing regulator, LuxS, are all required for maximal biofilm formation by C. difficile. Interestingly, a mutant in Spo0A, a transcription factor that controls spore formation, was defective for biofilm formation, indicating a possible link between sporulation and biofilm formation. Furthermore, we demonstrate that bacteria in clostridial biofilms are more resistant to high concentrations of vancomycin, a drug commonly used for treatment of CDI. Our data suggest that biofilm formation by C. difficile is a complex multifactorial process and may be a crucial mechanism for clostridial persistence in the host.


FEBS Letters | 2006

Post-genomic vaccine development

Davide Serruto; Rino Rappuoli

For over a century, vaccines were developed according to Pasteurs principles of isolating, inactivating and injecting the causative agent of an infectious disease. The availability of a complete microbial genome sequence in 1995 marked the beginning of a genomic era that has allowed scientists to change the paradigm and approach vaccine development starting from genomic information, a process named reverse vaccinology. This can be considered as one of the most powerful examples of how genomic information can be used to develop therapeutic interventions, which were difficult or impossible to tackle with conventional approaches. As the genomic era progressed, it became apparent that multi‐strain genome analysis is fundamental to the design of universal vaccines. In the post‐genomic era, the next challenge of the vaccine biologist will be the merging of the vaccinology with structural biology.


PLOS Pathogens | 2011

Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival.

Hebert Echenique-Rivera; Alessandro Muzzi; Elena Del Tordello; Kate L. Seib; Patrice Francois; Rino Rappuoli; Mariagrazia Pizza; Davide Serruto

During infection Neisseria meningitidis (Nm) encounters multiple environments within the host, which makes rapid adaptation a crucial factor for meningococcal survival. Despite the importance of invasion into the bloodstream in the meningococcal disease process, little is known about how Nm adapts to permit survival and growth in blood. To address this, we performed a time-course transcriptome analysis using an ex vivo model of human whole blood infection. We observed that Nm alters the expression of ≈30% of ORFs of the genome and major dynamic changes were observed in the expression of transcriptional regulators, transport and binding proteins, energy metabolism, and surface-exposed virulence factors. In particular, we found that the gene encoding the regulator Fur, as well as all genes encoding iron uptake systems, were significantly up-regulated. Analysis of regulated genes encoding for surface-exposed proteins involved in Nm pathogenesis allowed us to better understand mechanisms used to circumvent host defenses. During blood infection, Nm activates genes encoding for the factor H binding proteins, fHbp and NspA, genes encoding for detoxifying enzymes such as SodC, Kat and AniA, as well as several less characterized surface-exposed proteins that might have a role in blood survival. Through mutagenesis studies of a subset of up-regulated genes we were able to identify new proteins important for survival in human blood and also to identify additional roles of previously known virulence factors in aiding survival in blood. Nm mutant strains lacking the genes encoding the hypothetical protein NMB1483 and the surface-exposed proteins NalP, Mip and NspA, the Fur regulator, the transferrin binding protein TbpB, and the L-lactate permease LctP were sensitive to killing by human blood. This increased knowledge of how Nm responds to adaptation in blood could also be helpful to develop diagnostic and therapeutic strategies to control the devastating disease cause by this microorganism.

Collaboration


Dive into the Davide Serruto's collaboration.

Researchain Logo
Decentralizing Knowledge