Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Àlex Bravo is active.

Publication


Featured researches published by Àlex Bravo.


Database | 2015

DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes

Janet Piñero; Núria Queralt-Rosinach; Àlex Bravo; Jordi Deu-Pons; Anna Bauer-Mehren; Martin Baron; Ferran Sanz; Laura I. Furlong

DisGeNET is a comprehensive discovery platform designed to address a variety of questions concerning the genetic underpinning of human diseases. DisGeNET contains over 380 000 associations between >16 000 genes and 13 000 diseases, which makes it one of the largest repositories currently available of its kind. DisGeNET integrates expert-curated databases with text-mined data, covers information on Mendelian and complex diseases, and includes data from animal disease models. It features a score based on the supporting evidence to prioritize gene-disease associations. It is an open access resource available through a web interface, a Cytoscape plugin and as a Semantic Web resource. The web interface supports user-friendly data exploration and navigation. DisGeNET data can also be analysed via the DisGeNET Cytoscape plugin, and enriched with the annotations of other plugins of this popular network analysis software suite. Finally, the information contained in DisGeNET can be expanded and complemented using Semantic Web technologies and linked to a variety of resources already present in the Linked Data cloud. Hence, DisGeNET offers one of the most comprehensive collections of human gene-disease associations and a valuable set of tools for investigating the molecular mechanisms underlying diseases of genetic origin, designed to fulfill the needs of different user profiles, including bioinformaticians, biologists and health-care practitioners. Database URL: http://www.disgenet.org/


Nucleic Acids Research | 2017

DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants

Janet Piñero; Àlex Bravo; Núria Queralt-Rosinach; Alba Gutiérrez-Sacristán; Jordi Deu-Pons; Emilio Centeno; Javier Garcia-Garcia; Ferran Sanz; Laura I. Furlong

The information about the genetic basis of human diseases lies at the heart of precision medicine and drug discovery. However, to realize its full potential to support these goals, several problems, such as fragmentation, heterogeneity, availability and different conceptualization of the data must be overcome. To provide the community with a resource free of these hurdles, we have developed DisGeNET (http://www.disgenet.org), one of the largest available collections of genes and variants involved in human diseases. DisGeNET integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. DisGeNET data are homogeneously annotated with controlled vocabularies and community-driven ontologies. Additionally, several original metrics are provided to assist the prioritization of genotype–phenotype relationships. The information is accessible through a web interface, a Cytoscape App, an RDF SPARQL endpoint, scripts in several programming languages and an R package. DisGeNET is a versatile platform that can be used for different research purposes including the investigation of the molecular underpinnings of specific human diseases and their comorbidities, the analysis of the properties of disease genes, the generation of hypothesis on drug therapeutic action and drug adverse effects, the validation of computationally predicted disease genes and the evaluation of text-mining methods performance.


BMC Bioinformatics | 2015

Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research

Àlex Bravo; Janet Piñero; Núria Queralt-Rosinach; Michael Rautschka; Laura I. Furlong

BackgroundCurrent biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from free text repositories. We present the BeFree system aimed at identifying relationships between biomedical entities with a special focus on genes and their associated diseases.ResultsBy exploiting morpho-syntactic information of the text, BeFree is able to identify gene-disease, drug-disease and drug-target associations with state-of-the-art performance. The application of BeFree to real-case scenarios shows its effectiveness in extracting information relevant for translational research. We show the value of the gene-disease associations extracted by BeFree through a number of analyses and integration with other data sources. BeFree succeeds in identifying genes associated to a major cause of morbidity worldwide, depression, which are not present in other public resources. Moreover, large-scale extraction and analysis of gene-disease associations, and integration with current biomedical knowledge, provided interesting insights on the kind of information that can be found in the literature, and raised challenges regarding data prioritization and curation. We found that only a small proportion of the gene-disease associations discovered by using BeFree is collected in expert-curated databases. Thus, there is a pressing need to find alternative strategies to manual curation, in order to review, prioritize and curate text-mining data and incorporate it into domain-specific databases. We present our strategy for data prioritization and discuss its implications for supporting biomedical research and applications.ConclusionsBeFree is a novel text mining system that performs competitively for the identification of gene-disease, drug-disease and drug-target associations. Our analyses show that mining only a small fraction of MEDLINE results in a large dataset of gene-disease associations, and only a small proportion of this dataset is actually recorded in curated resources (2%), raising several issues on data prioritization and curation. We propose that joint analysis of text mined data with data curated by experts appears as a suitable approach to both assess data quality and highlight novel and interesting information.


BioMed Research International | 2014

A Knowledge-Driven Approach to Extract Disease-Related Biomarkers from the Literature

Àlex Bravo; Montserrat Cases; Núria Queralt-Rosinach; Ferran Sanz; Laura I. Furlong

The biomedical literature represents a rich source of biomarker information. However, both the size of literature databases and their lack of standardization hamper the automatic exploitation of the information contained in these resources. Text mining approaches have proven to be useful for the exploitation of information contained in the scientific publications. Here, we show that a knowledge-driven text mining approach can exploit a large literature database to extract a dataset of biomarkers related to diseases covering all therapeutic areas. Our methodology takes advantage of the annotation of MEDLINE publications pertaining to biomarkers with MeSH terms, narrowing the search to specific publications and, therefore, minimizing the false positive ratio. It is based on a dictionary-based named entity recognition system and a relation extraction module. The application of this methodology resulted in the identification of 131,012 disease-biomarker associations between 2,803 genes and 2,751 diseases, and represents a valuable knowledge base for those interested in disease-related biomarkers. Additionally, we present a bibliometric analysis of the journals reporting biomarker related information during the last 40 years.


Bioinformatics | 2015

PsyGeNET: a knowledge platform on psychiatric disorders and their genes.

Alba Gutiérrez-Sacristán; Solène Grosdidier; Olga Valverde; Marta Torrens; Àlex Bravo; Janet Piñero; Ferran Sanz; Laura I. Furlong

Summary: PsyGeNET (Psychiatric disorders and Genes association NETwork) is a knowledge platform for the exploratory analysis of psychiatric diseases and their associated genes. PsyGeNET is composed of a database and a web interface supporting data search, visualization, filtering and sharing. PsyGeNET integrates information from DisGeNET and data extracted from the literature by text mining, which has been curated by domain experts. It currently contains 2642 associations between 1271 genes and 37 psychiatric disease concepts. In its first release, PsyGeNET is focused on three psychiatric disorders: major depression, alcohol and cocaine use disorders. PsyGeNET represents a comprehensive, open access resource for the analysis of the molecular mechanisms underpinning psychiatric disorders and their comorbidities. Availability and implementation: The PysGeNET platform is freely available at http://www.psygenet.org/. The PsyGeNET database is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2016

DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases

Núria Queralt-Rosinach; Janet Piñero; Àlex Bravo; Ferran Sanz; Laura I. Furlong

Motivation: DisGeNET-RDF makes available knowledge on the genetic basis of human diseases in the Semantic Web. Gene-disease associations (GDAs) and their provenance metadata are published as human-readable and machine-processable web resources. The information on GDAs included in DisGeNET-RDF is interlinked to other biomedical databases to support the development of bioinformatics approaches for translational research through evidence-based exploitation of a rich and fully interconnected linked open data. Availability and implementation: http://rdf.disgenet.org/ Contact: [email protected]


medical informatics europe | 2015

Exploring brand-name drug mentions on Twitter for pharmacovigilance.

Pablo Carbonell; Miguel Angel Mayer; Àlex Bravo

Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.


Database | 2016

Combining machine learning, crowdsourcing and expert knowledge to detect chemical-induced diseases in text

Àlex Bravo; Tong Shu Li; Andrew I. Su; Benjamin M. Good; Laura I. Furlong

Drug toxicity is a major concern for both regulatory agencies and the pharmaceutical industry. In this context, text-mining methods for the identification of drug side effects from free text are key for the development of up-to-date knowledge sources on drug adverse reactions. We present a new system for identification of drug side effects from the literature that combines three approaches: machine learning, rule- and knowledge-based approaches. This system has been developed to address the Task 3.B of Biocreative V challenge (BC5) dealing with Chemical-induced Disease (CID) relations. The first two approaches focus on identifying relations at the sentence-level, while the knowledge-based approach is applied both at sentence and abstract levels. The machine learning method is based on the BeFree system using two corpora as training data: the annotated data provided by the CID task organizers and a new CID corpus developed by crowdsourcing. Different combinations of results from the three strategies were selected for each run of the challenge. In the final evaluation setting, the system achieved the highest Recall of the challenge (63%). By performing an error analysis, we identified the main causes of misclassifications and areas for improving of our system, and highlighted the need of consistent gold standard data sets for advancing the state of the art in text mining of drug side effects. Database URL: https://zenodo.org/record/29887?ln¼en#.VsL3yDLWR_V


Database | 2016

A crowdsourcing workflow for extracting chemical-induced disease relations from free text

Tong Shu Li; Àlex Bravo; Laura I. Furlong; Benjamin M. Good; Andrew I. Su

Relations between chemicals and diseases are one of the most queried biomedical interactions. Although expert manual curation is the standard method for extracting these relations from the literature, it is expensive and impractical to apply to large numbers of documents, and therefore alternative methods are required. We describe here a crowdsourcing workflow for extracting chemical-induced disease relations from free text as part of the BioCreative V Chemical Disease Relation challenge. Five non-expert workers on the CrowdFlower platform were shown each potential chemical-induced disease relation highlighted in the original source text and asked to make binary judgments about whether the text supported the relation. Worker responses were aggregated through voting, and relations receiving four or more votes were predicted as true. On the official evaluation dataset of 500 PubMed abstracts, the crowd attained a 0.505 F-score (0.475 precision, 0.540 recall), with a maximum theoretical recall of 0.751 due to errors with named entity recognition. The total crowdsourcing cost was


Scientific Reports | 2018

Identifying temporal patterns in patient disease trajectories using dynamic time warping: A population-based study

Alexia Giannoula; Alba Gutiérrez-Sacristán; Àlex Bravo; Ferran Sanz; Laura I. Furlong

1290.67 (

Collaboration


Dive into the Àlex Bravo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferran Sanz

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew I. Su

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Benjamin M. Good

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tong Shu Li

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge